2^{ème} semestre

Intégrale de Wiener

Soit $(B_t)_{t\geq 0}$ un mouvement Brownien standard de filtration associée $\mathbb{F}=(\mathcal{F}_t)_{t\geq 0}$.

Exercice 1. Intégrale de Wiener

Soit
$$f :\in L_2^{loc}(\mathbb{R}^+)$$
. Donner la loi de $\left(\int_0^t f(s) dB_s\right)_{0 \le t}$.

Exercice 2. Exemple

On pose $X_t = \int_0^t \sin(s) dB_s$.

- a) Montrer que X est bien définie.
- b) Montrer que X est un processus gaussien et préciser sa loi.
- c) Calculer $\mathbb{E}[X_t \mid \mathcal{F}_s]$.
- e) Montrer que $X_t = (\sin t)B_t \int_0^t \cos(s)B_s ds$.

Exercice 3. Pont Brownien

Pour $0 \le t \le 1$, on pose $X_t = \int_0^t \frac{X_s}{s-1} ds + B_t$.

a) Montrer que

$$X_t = (1 - t) \int_0^t \frac{dB_s}{1 - s}$$

- b) Montrer que X est un processus gaussien indépendant de B_1 et préciser sa loi.
- c) Montrer que $\lim_{t\to 1} X_t = 0$

Exercice 4. Processus d'Ornstein-Uhlenbeck

Soit $a, \sigma \in \mathbb{R}$ et V_0 une variable aléatoire réelle gaussienne indépendante de B. Pour $t \geq 0$, on pose

$$V_t = V_0 - \int_0^t aV_s \ ds + \sigma B_t.$$

a) Montrer que

$$V_t = e^{-at}V_0 + \int_0^t \sigma e^{-a(t-s)} dB_s.$$

- b) Donner la loi de V.
- c) Soit $t\geq 0.$ Donner la loi de $\int_0^t V_s\,ds.$

Exercice 5. Modèle de Vasiceck

Soit $a, b, r_0, \sigma \in \mathbb{R}$. Pour $t \geq 0$, on pose

$$r_t = r_0 + \int_0^t a(b - r_s) \ ds + \sigma B_t.$$

- a) Montrer que $V_t = r_t b$ est un processus d'Ornstein-Uhlenbeck. En déduire la loi de r et celle
- b) Montrer que r est Markovien et donner la loi de r_t conditionnellement à r_s avec $s \le t$.
- c) Calculer le prix, à la date $t \ge 0$, d'un zéro-coupon de maturité T et de taux r.