2^{ème} semestre

Intégrale d'Itô

Soit $(B_t)_{t\geq 0}$ un mouvement Brownien standard de filtration associée $\mathbb{F}=(\mathcal{F}_t)_{t\geq 0}$.

Exercice 1. Processus d'Itô

Montrer que les processus suivants sont des processus d'Itô. On précisera leurs drifts, leurs coefficients de diffusion et si ce sont des martingales.

- b) $((K B_t)^+)^{\alpha}$
- c) $e^{\frac{t}{2}}\sin(B_t)$ d) $(B_t + t)e^{-B_t \frac{t}{2}}$.

Exercice 2. Formule d'Itô

a) On admet que le système suivant admet une solution :

$$\begin{cases} X_t = x + \int_0^t Y_s dB_s \\ Y_t = y + \int_0^t X_s dB_s \end{cases}$$

Quel est le processus $X^2 + Y^2$?

- b) On suppose que X est un processus d'Itô de drift $a(K_t X_t)$, que $X_t = f(K_t)$ et que $K_t =$ $bt + \sigma B_t$ où $a; b; \sigma$ sont des constantes. Quelle est la forme de f?
- c) Soit Z le processus défini par

$$Z_t = \frac{1}{\sqrt{1-t}} e^{-\frac{B_t^2}{2(1-t)}}.$$

Montrer que Z est une martingale et calculer son espérance. Montrer qu'il existe ϕ tel que

$$Z_t = \exp\left(\int_0^t \phi_s dB_s - \frac{1}{2} \int_0^t \phi_s^2 ds\right).$$

Exercice 3. Fonctions d'échelle

Soit X un processus d'Itô. On dit que s est une fonction d'échelle de X si s(X) est une martingale. Trouver une fonction d'échelle des processus suivants

$$X_t = B_t + \nu t,$$
 $Y_t = e^{B_t + \nu t},$ $Z_t = z + \int_0^t b(Z_s) \, ds + \int_0^t \sigma(Z_s) \, dB_s.$

Montrer qu'il existe un processus croissant A_t tel que $s(Z_t) = W_{A_t}$ où W est un mouvement Brownien.

Exercice 4. Brownien géométrique

Soit S solution de $dS_t = S_t (bdt + \sigma dB_t)$. On notera $\tilde{S}_t = e^{-bt}S_t$.

- a) Montrer que \tilde{S} est une martingale. En déduire $\mathbb{E}[S_t \mid \mathcal{F}_s]$ pour tout $(t,s) \in \mathbb{R}^+ \times \mathbb{R}^+$.
- b) Montrer que $S_t = S_0 \exp\left((b \frac{\sigma^2}{2})t + \sigma B_t\right)$. En déduire que S est un processus markovien.

- c) Soit θ un processus \mathbb{F} -adapté, continu de $L^2(\Omega \times \mathbb{R}^+)$. On pose $Y_t = S_t L_t$ où L est solution de $dL_t = -L_t \theta_t dB_t$. Calculer dY_t .
- d) Soit X solution de $dX_t = -X_t (rdt + \theta_t dB_t)$. Montrer que $X_t = e^{-rt}L_t$ et calculer X_t^{-1}
- e) A quelle condition sur θ , XY est-il une martingale?

Exercice 5. Modèle de Cox-Ingersoll-Ross (CIR)

On rapelle que le modèle de taux de Vasicek est le suivant : pour $t \geq 0$, on pose $r_t = r_0 + \int_0^t a(b - r_s) ds + \sigma B_t$, avec $a, b, r_0, \sigma \in \mathbb{R}$.

- a) Montrer que $\mathbb{P}(r_t < 0) > 0$
- b) On suppose dorénavant que r suit un modèle CIR :

$$dr_t = a(b - r_t) dt + \sigma \sqrt{r_t} B_t.$$

Calculer r_t , en déduire que r est Markovien et donner la loi de r_t conditionnellement à r_s avec $s \leq t$.

c) Vérifier que $\mathbb{P}(r_t < 0) = 0$. Calculer le prix, à la date $t \ge 0$, d'un zéro-coupon de maturité T et de taux r.