
Fourier Analysis (formulae and exercises) enric.meinhardt@cmla.ens-cachan.fr

0. Prerequisites

0.1. Di�erential and integral calculus of one and several variables

0.2. Complex numbers: e iθ = cos θ + i sin θ, etc

0.3. Taylor series: f (x) = c0 + c1x + c2 + x2 + · · · =⇒ cn =
f (n)(0)
n!

0.4. Linear algebra, orthonormal bases: v = a1e1 + · · · + anen =⇒ ai = 〈v, ei 〉

0.5. Given the graph of a function, draw the graphs of its derivative and integral.

1. Fourier transform of functions f : R→ C

1.1 De�nitions. The Fourier transform of an integrable function f : R → C is the function
ˆf : R→ C defined by

f̂ (y) :=
∫
f (x)e−ixydx

The inverse Fourier transform of an integrable function g : R→ C is the function

ǧ (x) :=
1
2π

∫
g (y)e ixydy

The Fourier inversion theorem says that (for a certain class of functions) these two operations are
inverses of each other. Thus, we have a representation of f as an (infinite) linear combination of
sinusoidal functions, where the coe�cients of the linear combination are given by f̂ (y):

f (x) =
1
2π

∫
f̂ (y)e ixydy

With some care, these definitions are extended to all square-integrable functions (not necessarily
integrable).

1.2. Energy conservation (Plancherel’s theorem)∫ ��f (x)��2 dx = 1
2π

∫ ��� f̂ (y)���2 dy
1.3. Convolution theorems �f ∗ g = f̂ · ĝ f̂ g = f̂ ∗ ĝ

Where the convolution of two functions is defined by

(f ∗ g )(y) =
∫
f (x)g (y − x)dx
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1.4. General properties

f f̂
real even real even
real odd imaginary odd

real complex hermitian ˆf (y) = ˆf (−y)
λf + µg λ f̂ + µĝ
f (x/a) |a | f̂

(
ay

)
f (x − a) e−iay f̂ (y)
f ′(x) −i y f̂ (y)

1.5. Examples of transforms

f (x) f̂ (y)

χ[− 1
2a ,

1
2a ]
(x)

1
|a |

sinc
( y
2πa

)
e−axH(x)

1
a + i y

e−a |x |
2a

a2 + y2

e−ax
2

√
π

a
e−

y2

4a

sech (ax)
π

a
sech

(
π

2a
y
)

f (x) f̂ (y) (in the sense of distributions)

1 2πδ(y)

δ(x) 1

e iax 2πδ(y − a)

cos(ax) πδ(y − a) + πδ(y + a)

sin(ax) −iπδ(y − a) + iπδ(y + a)

xn 2πinδ(n)(y)∑
n∈Z

δ(x − na)
2π
a

∑
k ∈Z

δ

(
y −

2πk
a

)

2. Fourier series of functions f : T→ C

Let T = R/2πZ be the periodization of the interval [0, 2π]. The functions f : T → C are
identified with the the 2π-periodic functions on R. They can be expressed as Fourier series,
which is a linear combination of sinusoidal functions of integer frequencies:

f (θ) =
∑
n∈Z

f̂ (n) expinθ (1)

the coe�cients f̂ (n) are

f̂ (n) =
1
2π

∫ 2π

0
f (θ) exp−inθ dθ (2)

(this formula follows by multiplying formula (1) with the function e−inθ and integrating with
respect to θ.)

Fourier series have analogous properties to Fourier integrals (see 1.4. above). Only the property
for f (x/a) has no direct equivalent, because it does not preserve the periodicity of the function.
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3. Discrete Fourier transform of functions f : ZN → C

The “functions” f : ZN → C are the vectors of CN. The set of vectors

en =
(
e
2πikn
N

)
k=0,...,N−1

for n = 0, . . . ,N − 1, is an orthogonal basis of CN, indeed ep · eq = Nδpq .

The discrete Fourier transform (DFT) is the expression of CN vectors in this basis. Thus, a
vector v = (v0, . . . ,vN−1), can be expressed as

vk =
N−1∑
n=0

v̂ne
2πikn
N

and the coe�cients v̂n are recovered by computing v · en :

v̂n =
1
N

N−1∑
k=0

vke
− 2πikn

N

The discrete Fourier transform has analogous properties to the other transforms. Here all the
relationships are trivial to check using linear algebra (there are not convergence problems as in
the previous cases).

4. Sampling

If f : T → C is of the form f (θ) = a0 + a1e iθ + . . . + aN−1e i (N−1)θ we say that it is a band-
limited function, or a trigonometric polynomial. The coe�cients ak can be obtained from f (θ)
by computing its Fourier series (which is a finite sum).

Sampling theory provides another way to compute these coe�cients. First, we evaluate the
function f at N equally spaced points v :=

(
f (2πk/N)

)
k=0,...,N−1. Then, the vector of coe�-

cients a = (a0, . . . , aN−1) is the DFT of the vector v.

There are similar relationships between the other transforms described above, describing how
each transform commutes with sampling and interpolation operators.

5. Aliasing

Continuing with the sampling example above, suppose that N = 2P + 1 is odd, and notice that
the two trigonometric polynomials

f (θ) = a0 + a1e iθ + . . . + aN−1e i (N−1)θ

and

f̃ (θ) = a0 + a1e iθ + · · · + aPe iPθ + aP+1e−iPθ + aP+2e−i (P−1)θ · · · + aP+Pe−2iθ + aP+P+1e−iθ

take exactly the same values at the points θk = 2πk
N for k = 0, . . . ,N − 1. This happens because

they have the same frequencies modulo N and the functions e ikθ are 2π–periodic. The second
choice is much more natural (since it is the only way to obtain real-valued signals!), and it is
typically written as

f (θ) =
bN/2c−1∑
k=−bN/2c

ake
ikθ
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where the indices of the coe�cients ak are to be understood modulo N.

This is the simplest case of aliasing: di�erent functions having the same samples. In the general
case, we sample a function f (θ) =

∑N−1
n=0 ane

inθ at M points θk = 2πk
M . The case M = N is the

perfect sampling rate (corresponding to the Shannon-Nyquist condition), and the coe�cients an
are the DFT of the samples.

The case M > N is called oversampling, zero-padding or zoom-in, depending on the context. In that
case we have

f (θk ) =
N−1∑
n=0

ane
2πikn
M +

M−1∑
n=N

0 · e
2πikn
M =

M−1∑
n=0

ZP(a)ne
2πikn
M

where ZP(a0, a1, . . . , aN−1) = (a0, . . . , aN−1, 0, . . . , 0) is the zero-padding of the vector a to lengthM.

The case M < N is called subsampling, aliasing, decimation or zoom-out, depending on the context.
In that case we have

f (θk ) =
N−1∑
n=0

ane
2πik (n%M)

M =

M−1∑
m=0

( ∑
n%M=m

an

)
e
2πikm
M =

M−1∑
m=0

AL(a)me
2πikm
M

where AL(a) is the vector a folded to lengthM by summing the positions that are equal moduloM.

6. Fourier transform in several dimensions

If f : RN → C is an integrable function, its Fourier transform is defined as:

f̂ (y) =
∫
Rn
f (x)e−ix·y dx

and the inverse transform is

f (x) =
1
(2π)n

∫
Rn
f̂ (y)e ix·y dy

The properties are directly derived from those of the 1-dimensional Fourier transform by separa-
bility.

7. (Optional) Generalization: Pontryagin duality

The transforms described above are particular cases of a general construction called Pontryagin
duality, which works on locally compact abelian groups G. On such a group, there is a natural
measure called the Haar measure that allows to compute integrals of functions f : G → C. The
dual of a group G is the set of morphisms µ : G → C∗ (here C∗ is the complex unit circle).
The dual G∗ is itself a group under the point-wise product of functions. Moreover, it is locally
compact and abelian, and it has its own Haar integral. Finally, the Fourier transform of an
integrable function f : G→ C is a function ˆf : G∗ → C defined as

ˆf (y) =
∫
G
f (x)y(x)dx (3)

And, likewise, given an integrable function g : G∗ → C, its inverse transform is

ˇf (x) =
∫
G∗
f (y)y(x)dy (4)

And the Pontryagin duality theorem states that these two operations are inverses of each other.
Notice that since y(x) is a unit complex number, it is typically written as e i yx .
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On the table below we find the typical transforms as particular cases

spatial domain frequency domain analysis synthesis

general case G G∗ ˆf (y) =
∫
G
f (x)e−i yxdx ˇf (x) =

∫
G∗
f (y)e i yxdy

Fourier series T Z ˆfn =
1
2π

∫ 2π

0
f (θ)e−inθdθ ˇf (θ) =

∑
n∈Z

fne inx

Fourier transform R R ˆf (y) =
∫
R
f (x)e−i yxdx ˇf (x) =

1
2π

∫
R
f (y)e i yxdy

DFT ZN ZN
ˆfk =

1
N

N−1∑
n=0

fne−ikn ˇfn =
N−1∑
n=0

fke
ikn

DTFT Z T ˆf (θ) =
∑
n∈Z

fne−inx ˇfn =
1
2π

∫ 2π

0
f (θ)e inθdθ

Notice that the placement of many multiplicative factors in this table seems arbitrary. Indeed the
Haar measure is unique up to a multiplicative constant, and this leads to di�erent conventions
for the factors.

8. (Optional) Generalization: Laplace-Beltrami spectrum

Another generalization of Fourier series and integrals is found in di�erential geometry. Given
a manifold Ω (for example, a subset of the plane, or an arbitrary curved surface), a standard
geometric construction is the Laplace-Beltrami operator ∆Ω : C∞(Ω) → C∞(Ω). This is a positive-
definite linear operator, and when Ω is compact, it has a numerable set of eigenfunctions fk ,
satisfying ∆Ω fk = λk fk , with 0 < λ1 ≤ λ2 ≤ . . .. Under mild regularity conditions, these functions
form an orthogonal basis of L2(Ω).

The functions fk are called the harmonics, and the numbers λk are called the fundamental frequen-
cies. In the case of a solid body Ω, they correspond to the modes of vibration of the object. For
example, if Ω is the skin of a drum, the functions fk describe the shapes in which the skin can
vibrate, and the numbers λk determine the frequency at which they vibrate. Any vibration pattern
can be expressed as a linear combination of functions fk .

Notice that when Ω is one-dimensional, the Laplace-Beltrami operator is minus the second deriva-
tive, and the solutions of −f ′′ = λ2 f are the functions of the form f (x) = c1 sin(λx) + c2 cos(λy).
On the table below we find some particular cases

Ω eigenfunctions of ∆Ω
[0,π] sin(kx) k = 1, 2, . . .
[0,π]2 sin(px) sin(q y) p, q = 1, 2, . . .
unit disk Bessel functions
sphere spherical harmonics
drum skin harmonics of the drum
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9. Application : solving linear PDE

Given a function f : R2 → R, we want to find a function u satisfying the following PDE:

u − α2∆u = f

This is a linear PDE with constant coe�cients. We can solve it by applying the Fourier transform
on each side of the equation to obtain an equivalent relation:

û + α2(ξ2 + η2)û = ˆf

And solving for û

û =
1

1 + α2(ξ2 + η2)
· ˆf

we find the Fourier transform of the solution. Thus the solution is the convolution of the datum f
with a positive kernel of type Laplace.

More generally, a linear PDE has the form

P
(
∂

∂x1
, . . . ,

∂

∂xn

)
u = f

where P is a polynomial in n variables. Applying the Fourier transform on both sides, we obtain

P (iξ1, . . . , iξn) û = ˆf

Which gives the solution immediately.

10. Application : image processing

The Fourier transform in dimension 2 is an important tool in image processing.

A simple application is the removal of periodic noise in images. The frequencies of periodic noise
on an image I appear as local maxima in the image |̂I|, and can be removed manually (setting
them to zero using an image editor).

I log
(
1 + |̂I|

)
mask for Î reconstruction
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12. Exercices (stars denote relative di�culty)

E0. Is it possible to sample pure sinusoidal wave of frequency 10.000Hz (a very high pitched
sound) so that you hear a pure sinusoidal wave of frequency 440Hz (the middle A). If that
is the case, what is the necessary sampling rate?

E1. Is the definition of the Fourier transform (section 1.1) correct? Do all integrable functions
(i.e., those that

∫
R | f | < ∞) have a well-defined Fourier transform? Is ˆf (ξ) a bounded

function? Is it continuous?

E2. Check the general properties stated on section 1.4.

E3. Check the validity of the convolution theorem (recall the definition of convolution (f ∗
g )(x) :=

∫
R f (x − y)g (y)dy). What hypotheses are needed on f and g to assure that the

statement makes sense?

E4. Check the first three Fourier transforms on the table 1.5.

E5. Discuss the following reasoning. Let f be an integrable function. By the inversion theorem,
the function f it the Fourier transform of ˇf . Thus, f is continuous (by exercise E1).

*E6. The goal of this exercice is to compute that the Fourier transform of a gaussian function is
another gaussian function. Let a > 0 and ψ(x) = e−ax

2
.

(a) Prove that ψ(x) is integrable.

(b) Compute ψ̂(0). (This is a classical result that you must know)

(c) Assume that ψ̂ is derivable. Prove that ψ̂ ′ = −i ĝ , where g is the function x 7→ xψ(x).

(d) Prove that ψ̂′(ξ) = iξψ̂(ξ).

(e) Combine the previous two results to obtain a di�erential equation for ψ, and solve it.
Write an explicit formula for ψ̂(ξ).

E7. Check that the vectors en of section 3 are orthogonal. (Hint: there is a geometric interpretation.)

E8. Prove the sampling result stated on section 4 (relating the DFT to Fourier series).

E9. A left coordinate shift of k positions is the map sk : RN → RN defined by

sk (x0, x1, . . . , xN−1) := (xk, xk+1, . . . , xk+N−1)

where the indices are to be interpreted moduloN. This definition makes sense only when k ∈
Z. How would you define a coordinate shift for k ∈ R? (Hint: look at the various properties of
the DFT).

**E10. The previous exercice gives a discrete implementation of a shift f (x−a) for a ∈ R. Given a >
1, how would you define a zoom-in f (ax) and a zoom-out f (x/a) ?

E11. A digital image is an array of W×H real numbers. The indexes of the array are called pixels
and the value of each pixel is called its gray level. How would you define the Fourier transform
of an image? How would you display it?

E12. The following figure shows an image and its Fourier transform. What is the value of the
central pixel? Why do you see a cross around it? (Hint: how would the original image look
after a coordinate shift?)
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*E13. Below you see six images and their six Fourier transforms (not necessarily in the same
order). Look very attentively at the images. Which image corresponds to each spectrum?

***E14. Explain the following optical illusion and formalize it in terms of Fourier analysis.

**E15. Give a closed form expression for the sum g (x) =
∑
n≥1

1
n2 + x2

. Check that lim
x→0
=
π2

6
.

Hint: compute the Parseval identity for the Fourier series of the function f (θ) = eβθ.
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