Functional Analysis

(collection of some definitions and results)

0. Prerequsites

0.1. Differential and integral calculus of one and several variables

- 0.2. Linear algebra: vector spaces, linear maps, inner products, dual space
- 0.3. Measure theory: null sets, equality "almost everywhere", integrable functions
- 0.4. General topology: compactness, continuity, density

0.5. All norms in finite dimension are equivalent

1. Basic integration results

1.1. Definition.

A function $f: \Omega \to \mathbf{R}$ is *integrable* if $\int_{\Omega} |f| < \infty$. The set of all integrable functions on Ω is denoted $L^1(\Omega)$. Two functions of $L^1(\Omega)$ that coincide almost everywhere are considered as the same function. Using the norm $||f||_{L^1(\Omega)} := \int_{\Omega} |f|$, this set is a normed vector space (and it turns out to be complete).

1.2. Theorem (monotone convergence, Beppo Levi)

Let f_n an increasing sequence of positive L^1 functions such that $\sup_n \int f_n < \infty$. Then $f_n(x)$ converges almost everywhere to a finite limit denoted f(x). Moreover, $f \in L^1(\Omega)$ and $||f_n - f||_{L^1} \to 0$.

1.3. Theorem (dominated convergence, Lebesgue)

Let f_n a sequence of L^1 functions converging pointwise a.e. to a function f(x). Assume there exist a function $h \in L^1(\Omega)$ such that $|f_n(x)| \le h(x)$ almost everywhere. Then $f \in L^1(\Omega)$ and $||f_n - f||_{L^1} \to 0$.

1.4. Theorem (density)

The set $C_c(\Omega)$ of compactly supported continuous functions is dense in $L^1(\Omega)$.

1.5. Theorem (Tonelli)

If $f: \Omega_1 \times \Omega_2 \to \mathbf{R}^+ \cup \{+\infty\}$ then

$$\iint_{\Omega_1 \times \Omega_2} f(x, y) \mathrm{d}x \mathrm{d}y = \int_{\Omega_1} \left(\int_{\Omega_2} f(x, y) \mathrm{d}y \right) \mathrm{d}x = \int_{\Omega_2} \left(\int_{\Omega_1} f(x, y) \mathrm{d}x \right) \mathrm{d}y.$$

in particular, if one of these three integrals is $+\infty$, then the other two also are also. (In words: the sum of positive numbers, be it finite or infinite, does not depend on the order in which they are summed.)

1.6. Theorem (Fubini)

If $f \in L^1(\Omega_1 \times \Omega_2)$ then the three members in the formula above are well-defined and they are equal. In particular, the fact that the second member is well defined implies that

- The function $y \mapsto f(x, y)$ belongs to $L^1(\Omega_2)$ for a.e. x

- The function $x \mapsto \int_{\Omega_2} f(x, y) dy$ thus defined belongs to $L^1(\Omega_1)$.

2. L^p spaces

2.1. Definition. Let us define the following numbers (which may be infinite)

$$\|f\|_{L^{p}(\Omega)} := \left(\int_{\Omega} |f|^{p}\right)^{1/p} \quad \text{for } 1 \le p < \infty$$
$$\|f\|_{L^{\infty}(\Omega)} := \inf\left\{M \ ; \ |f(x)| \le M \text{ a.e.on } \Omega\right\}$$

The space $L^p(\Omega)$ for $1 \le p \le \infty$ is the set of functions such that $||f||_{L^p(\Omega)} < \infty$. To each $p \in [1,\infty]$ we associate its *conjugate exponent* p' such that $\frac{1}{p} + \frac{1}{p'} = 1$.

2.2. Hölder inequality. Let $p \in [1, \infty]$, $f \in L^p$ and $g \in L^{p'}$. Then $fg \in L^1$ and

$$\int |fg| \le \left\|f\right\|_{L^p} \left\|g\right\|_{L^{p'}}$$

2.3. Minkowski's inequality. Let $p \in [1,\infty]$ and $f,g \in L^p$. Then

$$||f+g||_{L^p} \leq ||f||_{L^p} + ||g||_{L^p}$$

2.4. Interpolation inequality. Let $1 \le s \le r \le t \le \infty$ and $f \in L^s \cap L^t$. Then $f \in L^r$ and

$$\|f\|_{L^r} \leq \|f\|_{L^s}^{\theta} \|g\|_{L^t}^{1-\theta}$$

where $\theta = \frac{s(t-r)}{r(t-s)}$.

2.6. Theorem (Fischer-Riesz). L^p is a complete normed vector space for $p \in [1, \infty]$.

2.7. **Riesz representation theorem.** Let $p \in [1,\infty)$ and let $\varphi : L^p \to \mathbf{R}$ be a linear continuous function. Then there exist a unique $u \in L^{p'}$ such that

$$\boldsymbol{\varphi}(f) = \int \boldsymbol{u} f \qquad \forall f \in L^p$$

Thus, the topological dual of L^p is $L^{p'}$.

- 2.8. **Definition.** $L^p_{loc}(\Omega) :=$ functions such that $f \chi_K \in L^p(\Omega)$ for all compacts $K \subseteq \Omega$
- 2.9. Fundamental lemma. Let $f \in L^1_{loc}(\Omega)$ such that

$$\int f u = 0 \qquad \forall u \in C_c(\Omega)$$

then f = 0 almost everywhere on Ω .

- 2.9. Theorem (density). The space $C_c(\Omega)$ is dense in $L^p(\Omega)$ for $1 \le p < \infty$.
- 2.10. Theorem (convolution in L^p). The *convolution* of $f, g : \mathbf{R}^N \to \mathbf{R}$ is defined by

$$(f * g)(x) := \int_{\mathbf{R}} f(x - y)g(y)dy$$

It is well-defined in the following cases:

$$\begin{array}{cccc} f & g & f \ast g \\ \hline L^1 & L^1 & L^1 \\ L^1 & L^2 & L^2 \\ L^p & L^{p'} & L^{\infty} \cap \mathscr{C} \end{array}$$

3. Hilbert spaces

3.1. **Definition.** A *real Hilbert space* is a real vector space *H* with an inner product (f,g), such that *H* is complete under the norm $||f|| := \sqrt{(f,f)}$. Examples: \mathbf{R}^N and $L^2(\Omega)$.

3.2. Cauchy-Schwarz inequality. $|(f,g)| \leq ||f|| ||g||$

3.3. Pythagoras theorem. If (f,g) = 0 then $||f+g||^2 = ||f||^2 + ||g||^2$. If the sequence f_k is pairwise orthogonal then $||\sum_k f_k||^2 = \sum_k ||f_k||^2$.

3.4. Parallelogram identity. $||f||^2 + ||g||^2 = \frac{1}{2} \left(||f+g||^2 + ||f-g||^2 \right)$

3.5. Polarization identity. $(f,g) = \frac{1}{4} \left(\|f+g\|^2 - \|f-g\|^2 \right)$

3.6. Theorem (projection on a closed convex set). Let $C \subseteq H$ be a nonempty closed convex set. Then, for any $f \in H$ there exist a unique $g \in C$ that minimizes the distance to f. The point g is characterized by the relation $\forall h \in C, (f - g, h - g) \leq 0$.

3.7. **Definition.** Let $A \subseteq H$. The *orthogonal* of A is the set

$$A^{\perp} := \{ f, \forall a \in A, (f, a) = 0 \}$$

It is a closed subspace of H.

3.8. Theorem (orthogonal decomposition). Let $F \subseteq H$ be a closed subspace. Then any element of H decomposes in a unique way in the form f = g + h where $g \in F$ and $h \in F^{\perp}$. Moreover, g is the projection of f on F and h is the projection of f on F^{\perp} .

3.9. **Theorem (Riesz).** For any $f \in H$, the map $u \mapsto (u, f)$ is a continuous linear map from H to **R**. Conversely, if $\varphi : H \to \mathbf{R}$ is a continuous linear map, there exists a unique $f \in H$ such that $\varphi(u) = (u, f) \quad \forall u \in H$.

Thus, the dual of H is isomorphic canonically to H.

3.10. **Definition.** A *Hilbert basis* of *H* is an orthonormal sequence of vectors e_n , $n \in \mathbb{N}$ which is total (it spans the whole space *H*).

3.11. Theorem. Any (separable) Hilbert space admits a Hilbert basis.

3.12. Theorem ("Fourier" series). Any element of f can be written in a unique way using a Hilbert basis

$$f=\sum_n c_n e_n.$$

The coefficients are $c_n = (f, e_n)$ and they satisfy **Parseval's identity** $||f||^2 = \sum_n ||c_n||^2$.

3.13. Corollary. All (separable) Hilbert spaces are isomorphic (to $\ell^2(\mathbf{N})$).

3.14. Continuity of linear forms. Let $\lambda : H \to \mathbf{R}$ be a linear form. We say that is continuous if and only if there exists a constant *C* such that $|\lambda(f)| \le C||f||$.

3.15. Continuity of bilinear forms. Let $a: H \times H \to \mathbf{R}$ be a bilinear form. We say that is continuous if and only if there exists a constant *C* such that $|a(f,g)| \leq C||f|| ||g||$. Moreover, if there exists a constant c > 0 such that $a(f, f) \geq c ||f||^2$ then the form is said to be *coercive*.

3.16. Theorem (Lax-Milgram, symmetric case). Let *E* be an energy of the form

$$E(f) = \frac{1}{2}a(f,f) - b(f)$$

where *a* is a continuous bilinear, symmetric and coercive form, and *b* is a continuous linear form. Then there is a unique *f* that minimizes E(f). Moreover, it is characterized by the relation

$$u(f,u) = b(u) \qquad \forall u \in H$$

4. Distributions

4.1. Definitions. Let $\Omega \subseteq \mathbf{R}$ be a connected subset. We introduce the following spaces

$$\mathscr{D}(\Omega) := \mathscr{C}^{\infty}_{c}(\Omega)$$

 $\mathscr{D}'(\Omega) :=$ dual of $\mathscr{D}(\Omega)$

The dual is taken with respect to a topology of \mathscr{D} defined elsewhere. The elements of \mathscr{D}' are called *distributions*.

4.2. Notation. If $T : \mathcal{D} \to \mathbf{R}$ is a distribution, we use the following notations for $T(\varphi)$:

$$T(\varphi) = (T,\varphi) = \int_{\Omega} T\varphi = \int_{\Omega} T(x)\varphi(x)dx$$

4.3. Definition. We say that a sequence of distributions T_n converges to T if for any function $\varphi \in \mathscr{D}$ we have $(T_n, \varphi) \to (T, \varphi)$.

4.4. Examples.

1) To any function $f \in L^1_{loc}(\Omega)$ we associate a distribution T_f defined by

$$(T_f, \varphi) := \int_{\Omega} f(x)\varphi(x)\mathrm{d}x.$$

This association is injective, and denoted simply by $T_f = f$.

- 2) Dirac delta: $(\delta, \varphi) := \varphi(0)$
- 3) Derivative of Dirac delta: $(\delta', \varphi) := -\varphi'(0)$
- 4) Dirac comb: $(\amalg, \varphi) := \sum_{k \in \mathbb{Z}} \varphi(2\pi k).$
- 5) Principal value of 1/x:

$$(\operatorname{vp}(1/x), \varphi) := \lim_{\varepsilon \to 0} \int_{\varepsilon}^{\infty} \frac{\varphi(x) - \varphi(-x)}{x} dx$$

or equivalently, vp(1/x) := ln(|x|)' (defined below)

4.5. Derivative of a distribution. $(T', \phi) := (T, -\phi')$

4.6. Proposition. This definition of the derivative coincides with the classical one: when $T = T_f$ for a differentiable *f*, then $T'_f = T_{f'}$.

4.7. Product of a function and a distribution. $(fT, \varphi) := (T, f\varphi)$ Observation: the product of two distributions cannot be defined in general.

5. Sobolev spaces

5.1. Definition. We define the following spaces, for $1 \le p \le \infty$ and k = 1, 2, 3, ...

$$W^{k,p}(\Omega) := \left\{ \begin{cases} \text{functions } f : \Omega \to \mathbf{R} \text{ such that} \\ \text{all their distributional derivatives} \\ \text{of order } 0, \dots, k \text{ belong to } L^p(\Omega) \end{cases} \right\}$$

$$H^{\kappa}(\Omega) := W^{\kappa,2}(\Omega).$$

The space $W^{k,p}(\Omega)$ is endowed with the following norm (written here for the 1D case $\Omega \subseteq \mathbf{R}$):

$$||f||_{k,p} := \left(||f||_p^p + ||f'||_p^p + \dots ||f^{(k)}||_p^p \right)^{1/p}$$

5.2. Properties. The spaces $W^{k,p}$ are complete normed vector spaces. The spaces H^k are Hilbert spaces (thus, their norms can be computed using a Hilbert basis and Parseval's identity).

6. Bibliography

6.1. H. Brézis : *Analyse Fonctionnelle* (canonical reference for functional analysis)

6.2. L. C. Evans : *Partial Differential Equations* (canonical reference for PDE)

6.3. C. Gasquet, P. Witomski : *Analyse de Fourier et applications* (nice exposition of the theory of distributions)

7. Exercices

- **E1.** Find two counterexamples to Beppo Levi (missing the condition of monotonicity). One example using compactly-supported functions and another one using bounded functions.
- **E2.** Find two counterexamples to the dominated convergence theorem (missing the dominating function). One example using compactly-supported functions and another one using bounded functions.
- *E3. Can you find a function f(x,y) that is integrable along each variable and $\int (\int f(x,y)dx) dy = 2$ but $\int (\int f(x,y)dy) dx = 3$.
- E4. Find functions satisfying each of the following conditions (or prove that they do not exist)
 - (a) $f \in L^{10}(\mathbf{R}), f \notin L^{12}(\mathbf{R})$
 - (b) $f \notin L^{10}(\mathbf{R}), f \in L^{12}(\mathbf{R})$
 - (c) $f \in L^{10}(\mathbf{R}), f \notin L^{12}(\mathbf{R}), f \in L^{14}(\mathbf{R})$
 - (d) $f \notin L^{10}(\mathbf{R}), f \in L^{12}(\mathbf{R}), f \notin L^{14}(\mathbf{R})$

E5. Prove that the dual of L^1 is L^{∞} .

- ****E6.** Prove that the dual of L^{∞} is not L^1 .
 - **E7.** Find a Hilbert basis of $L^2([0,T])$ consisting of sine and cosine functions.
 - **E8.** Find a Hilbert basis of $L^2([0,T])$ consisting of only sine functions.
 - **E9.** Find a Hilbert basis of $L^2([0,T])$ consisting of only cosine functions.
- ***E10.** Find a Hilbert basis of $L^2(\mathbf{R})$.
- **E11.** The polarization identity allows to compute the scalar product from the associated norm. Does it imply that any normed space has an associated scalar product?
- E12. Prove proposition 4.6 above.
- **E13.** Define the shift of a distribution on **R** by a length *a*. (Analogous to the shift f(x-a) of a function *f*).
- **E14.** If $\tau_a T$ denotes the shift of T, prove that $T' = \lim_{h \to 0} \frac{T \tau_h T}{h}$
- E15. Write down the scalar product that leads to the Sobolev norm on section 6.
- **E16.** Let $\Omega \subseteq \mathbf{R}^2$ and $f \in L^2(\Omega)$. Prove that there is a unique function *u* minimizing the energy

$$E(u) = \frac{1}{2} \int \|\nabla u(x,y)\|^2 \mathrm{d}x \mathrm{d}y - \int f(x,y)u(x,y)\mathrm{d}x \mathrm{d}y$$

and satisfying the condition u = 0 on $\partial \Omega$. Moreover, the optimal function satisfies Poisson equation $-\Delta u = f$. (*Hint: define an appropriate Hilbert space, and apply Lax-Milgram theorem.*)