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(collection of some definitions and results)

0. Prerequsites

0.1. Differential and integral calculus of one and several variables

0.2. Linear algebra: vector spaces, linear maps, inner products, dual space

0.3. Measure theory: null sets, equality “almost everywhere”, integrable functions

0.4. General topology: compactness, continuity, density

0.5. All norms in finite dimension are equivalent

1. Basic integration results

1.1. Definition.
A function f : Ω→ R is integrable if

∫
Ω
| f | < ∞. The set of all integrable functions on Ω is

denoted L1(Ω). Two functions of L1(Ω) that coincide almost everywhere are considered as the
same function. Using the norm ‖ f‖L1(Ω) :=

∫
Ω
| f |, this set is a normed vector space (and it turns

out to be complete).

1.2. Theorem (monotone convergence, Beppo Levi)
Let fn an increasing sequence of positive L1 functions such that supn

∫
fn < ∞. Then fn(x) con-

verges almost everywhere to a finite limit denoted f (x). Moreover, f ∈ L1(Ω) and ‖ fn− f‖L1 →
0.

1.3. Theorem (dominated convergence, Lebesgue)
Let fn a sequence of L1 functions converging pointwise a.e. to a function f (x). Assume there
exist a function h∈ L1(Ω) such that | fn(x)| ≤ h(x) almost everywhere. Then f ∈ L1(Ω) and ‖ fn−
f‖L1 → 0.

1.4. Theorem (density)
The set Cc(Ω) of compactly supported continuous functions is dense in L1(Ω).

1.5. Theorem (Tonelli)
If f : Ω1×Ω2→ R+∪{+∞} then∫∫

Ω1×Ω2

f (x,y)dxdy =
∫

Ω1

(∫
Ω2

f (x,y)dy
)

dx =
∫

Ω2

(∫
Ω1

f (x,y)dx
)

dy.

in particular, if one of these three integrals is +∞, then the other two also are also. (In words: the
sum of positive numbers, be it finite or infinite, does not depend on the order in which they are
summed.)

1.6. Theorem (Fubini)
If f ∈ L1(Ω1×Ω2) then the three members in the formula above are well-defined and they are
equal. In particular, the fact that the second member is well defined implies that
- The function y 7→ f (x,y) belongs to L1(Ω2) for a.e. x
- The function x 7→

∫
Ω2

f (x,y)dy thus defined belongs to L1(Ω1).
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2. Lp spaces

2.1. Definition. Let us define the following numbers (which may be infinite)

‖ f‖Lp(Ω) :=
(∫

Ω

| f |p
)1/p

for 1≤ p < ∞

‖ f‖L∞(Ω) := inf
{

M ; | f (x)| ≤M a.e.on Ω

}
The space Lp(Ω) for 1≤ p≤ ∞ is the set of functions such that ‖ f‖Lp(Ω) < ∞.
To each p ∈ [1,∞] we associate its conjugate exponent p′ such that 1

p +
1
p′ = 1.

2.2. Hölder inequality. Let p ∈ [1,∞], f ∈ Lp and g ∈ Lp′ . Then f g ∈ L1 and∫
| f g| ≤ ‖ f‖Lp ‖g‖Lp′

2.3. Minkowski’s inequality. Let p ∈ [1,∞] and f ,g ∈ Lp. Then

‖ f +g‖Lp ≤ ‖ f‖Lp + ‖g‖Lp

2.4. Interpolation inequality. Let 1≤ s≤ r ≤ t ≤ ∞ and f ∈ Ls∩Lt . Then f ∈ Lr and

‖ f‖Lr ≤ ‖ f‖θ
Ls ‖g‖1−θ

Lt

where θ = s(t−r)
r(t−s) .

2.6. Theorem (Fischer-Riesz). Lp is a complete normed vector space for p ∈ [1,∞].

2.7. Riesz representation theorem. Let p ∈ [1,∞) and let ϕ : Lp → R be a linear continuous
function. Then there exist a unique u ∈ Lp′ such that

ϕ( f ) =
∫

u f ∀ f ∈ Lp

Thus, the topological dual of Lp is Lp′ .

2.8. Definition. Lp
loc(Ω) := functions such that f χK ∈ Lp(Ω) for all compacts K ⊆Ω

2.9. Fundamental lemma. Let f ∈ L1
loc(Ω) such that∫
f u = 0 ∀u ∈Cc(Ω)

then f = 0 almost everywhere on Ω.

2.9. Theorem (density). The space Cc(Ω) is dense in Lp(Ω) for 1≤ p < ∞.

2.10. Theorem (convolution in Lp). The convolution of f ,g : RN → R is defined by

( f ∗g)(x) :=
∫

R
f (x− y)g(y)dy

It is well-defined in the following cases:
f g f ∗g

L1 L1 L1

L1 L2 L2

Lp Lp′ L∞∩C
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3. Hilbert spaces

3.1. Definition. A real Hilbert space is a real vector space H with an inner product ( f ,g), such
that H is complete under the norm ‖ f‖ :=

√
( f , f ). Examples: RN and L2(Ω).

3.2. Cauchy-Schwarz inequality. |( f ,g)| ≤ ‖ f‖ ‖g‖

3.3. Pythagoras theorem. If ( f ,g) = 0 then ‖ f +g‖2 = ‖ f‖2 +‖g‖2.
If the sequence fk is pairwise orthogonal then ‖∑k fk‖2 = ∑k ‖ fk‖2.

3.4. Parallelogram identity. ‖ f‖2 + ‖g‖2 =
1
2
(
‖ f +g‖2 + ‖ f −g‖2)

3.5. Polarization identity. ( f ,g) =
1
4
(
‖ f +g‖2−‖ f −g‖2)

3.6. Theorem (projection on a closed convex set). Let C⊆H be a nonempty closed convex set.
Then, for any f ∈ H there exist a unique g ∈C that minimizes the distance to f . The point g is
characterized by the relation ∀h ∈C,( f −g,h−g)≤ 0.

3.7. Definition. Let A⊆ H. The orthogonal of A is the set

A⊥ := { f , ∀a ∈ A,( f ,a) = 0}

It is a closed subspace of H.

3.8. Theorem (orthogonal decomposition). Let F ⊆H be a closed subspace. Then any element
of H decomposes in a unique way in the form f = g+h where g ∈ F and h ∈ F⊥. Moreover, g
is the projection of f on F and h is the projection of f on F⊥.

3.9. Theorem (Riesz). For any f ∈ H, the map u 7→ (u, f ) is a continuous linear map from H
to R. Conversely, if ϕ : H → R is a continuous linear map, there exists a unique f ∈ H such
that ϕ(u) = (u, f ) ∀u ∈ H.

Thus, the dual of H is isomorphic canonically to H.

3.10. Definition. A Hilbert basis of H is an orthonormal sequence of vectors en, n ∈ N which is
total (it spans the whole space H).

3.11. Theorem. Any (separable) Hilbert space admits a Hilbert basis.

3.12. Theorem (“Fourier” series). Any element of f can be written in a unique way using a
Hilbert basis

f = ∑
n

cnen.

The coefficients are cn = ( f ,en) and they satisfy Parseval’s identity ‖ f‖2 = ∑n ‖cn‖2.

3.13. Corollary. All (separable) Hilbert spaces are isomorphic (to `2(N)).

3.14. Continuity of linear forms. Let λ : H→ R be a linear form. We say that is continuous if
and only if there exists a constant C such that |λ ( f )| ≤C‖ f‖.

3.15. Continuity of bilinear forms. Let a : H ×H → R be a bilinear form. We say that is
continuous if and only if there exists a constant C such that |a( f ,g)| ≤ C‖ f‖‖g‖. Moreover, if
there exists a constant c > 0 such that a( f , f )≥ c‖ f‖2 then the form is said to be coercive.

3.16. Theorem (Lax-Milgram, symmetric case). Let E be an energy of the form

E( f ) =
1
2

a( f , f )−b( f )

where a is a continuous bilinear, symmetric and coercive form, and b is a continuous linear form.
Then there is a unique f that minimizes E( f ). Moreover, it is characterized by the relation

a( f ,u) = b(u) ∀u ∈ H.
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4. Distributions

4.1. Definitions. Let Ω⊆ R be a connected subset. We introduce the following spaces

D(Ω) := C ∞
c (Ω)

D ′(Ω) := dual of D(Ω)

The dual is taken with respect to a topology of D defined elsewhere. The elements of D ′ are
called distributions.

4.2. Notation. If T : D → R is a distribution, we use the following notations for T (ϕ):

T (ϕ) = (T,ϕ) =
∫

Ω

T ϕ =
∫

Ω

T (x)ϕ(x)dx

4.3. Definition. We say that a sequence of distributions Tn converges to T if for any function ϕ ∈
D we have (Tn,ϕ)→ (T,ϕ).

4.4. Examples.

1) To any function f ∈ L1
loc(Ω) we associate a distribution Tf defined by

(Tf ,ϕ) :=
∫

Ω

f (x)ϕ(x)dx.

This association is injective, and denoted simply by Tf = f .

2) Dirac delta: (δ ,ϕ) := ϕ(0)

3) Derivative of Dirac delta: (δ ′,ϕ) :=−ϕ ′(0)

4) Dirac comb: (X,ϕ) := ∑k∈Z ϕ(2πk).

5) Principal value of 1/x:

(vp(1/x),ϕ) := lim
ε→0

∫
∞

ε

ϕ(x)−ϕ(−x)
x

dx

or equivalently, vp(1/x) := ln(|x|)′ (defined below)

4.5. Derivative of a distribution. (T ′,ϕ) := (T,−ϕ ′)

4.6. Proposition. This definition of the derivative coincides with the classical one: when T = Tf
for a differentiable f , then T ′f = Tf ′ .

4.7. Product of a function and a distribution. ( f T,ϕ) := (T, f ϕ)
Observation: the product of two distributions cannot be defined in general.

5. Sobolev spaces

5.1. Definition. We define the following spaces, for 1≤ p≤ ∞ and k = 1,2,3, . . .

W k,p(Ω) :=


functions f : Ω→ R such that
all their distributional derivatives
of order 0, . . . ,k belong to Lp(Ω)

}

Hk(Ω) := W k,2(Ω).

The space W k,p(Ω) is endowed with the following norm (written here for the 1D case Ω⊆ R):

‖ f‖k,p :=
(
‖ f‖p

p +‖ f ′‖p
p + · · ·‖ f (k)‖p

p

)1/p

5.2. Properties. The spaces W k,p are complete normed vector spaces. The spaces Hk are Hilbert
spaces (thus, their norms can be computed using a Hilbert basis and Parseval’s identity).
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6.1. H. Brézis : Analyse Fonctionnelle
(canonical reference for functional analysis)

6.2. L. C. Evans : Partial Differential Equations
(canonical reference for PDE)

6.3. C. Gasquet, P. Witomski : Analyse de Fourier et applications
(nice exposition of the theory of distributions)

7. Exercices

E1. Find two counterexamples to Beppo Levi (missing the condition of monotonicity). One
example using compactly-supported functions and another one using bounded functions.

E2. Find two counterexamples to the dominated convergence theorem (missing the dominat-
ing function). One example using compactly-supported functions and another one using
bounded functions.

*E3. Can you find a function f (x,y) that is integrable along each variable
and

∫
(
∫

f (x,y)dx)dy = 2 but
∫
(
∫

f (x,y)dy)dx = 3.

E4. Find functions satisfying each of the following conditions (or prove that they do not exist)

(a) f ∈ L10(R), f 6∈ L12(R)

(b) f 6∈ L10(R), f ∈ L12(R)

(c) f ∈ L10(R), f 6∈ L12(R), f ∈ L14(R)

(d) f 6∈ L10(R), f ∈ L12(R), f 6∈ L14(R)

E5. Prove that the dual of L1 is L∞.

**E6. Prove that the dual of L∞ is not L1.

E7. Find a Hilbert basis of L2([0,T ]) consisting of sine and cosine functions.

E8. Find a Hilbert basis of L2([0,T ]) consisting of only sine functions.

E9. Find a Hilbert basis of L2([0,T ]) consisting of only cosine functions.

*E10. Find a Hilbert basis of L2(R).

E11. The polarization identity allows to compute the scalar product from the associated norm.
Does it imply that any normed space has an associated scalar product?

E12. Prove proposition 4.6 above.

E13. Define the shift of a distribution on R by a length a. (Analogous to the shift f (x−a) of a
function f ).

E14. If τaT denotes the shift of T , prove that T ′ = limh→0
T−τhT

h

E15. Write down the scalar product that leads to the Sobolev norm on section 6.

E16. Let Ω⊆ R2 and f ∈ L2(Ω). Prove that there is a unique function u minimizing the energy

E(u) =
1
2

∫
‖∇u(x,y)‖2dxdy−

∫
f (x,y)u(x,y)dxdy

and satisfying the condition u = 0 on ∂Ω. Moreover, the optimal function satisfies Poisson
equation −∆u = f . (Hint: define an appropriate Hilbert space, and apply Lax-Milgram
theorem.)
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