Master MVA Optimization Reminders Part I

Jean-Christophe Pesquet

Center for Visual Computing Inria, CentraleSupélec Institut Universitaire de France jean-christophe@pesquet.eu

Reference books

- D. Bertsekas, Nonlinear programming, Athena Scientic, Belmont, Massachussets, 1996.
- Y. Nesterov, Introductory Lectures on Convex Optimization : A Basic Course, Springer, 2004.
- S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, 2004.
- H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, 2017.

A few mathematical background

A (real) pre-Hilbertian space \mathcal{H} is a real vector space endowed with a function $\langle \cdot | \cdot \rangle : \mathcal{H}^2 \to \mathbb{R}$, called inner product such that ① ($\forall (x, y) \in \mathcal{H}^2$) $\langle x | y \rangle = \langle y | x \rangle$ ② ($\forall (x, y, z) \in \mathcal{H}^3$) $\langle x + y | z \rangle = \langle x | z \rangle + \langle y | z \rangle$ ③ ($\forall (x, y) \in \mathcal{H}^2$) ($\forall \alpha \in \mathbb{R}$) $\langle \alpha x | y \rangle = \alpha \langle y | x \rangle$ ④ ($\forall x \in \mathcal{H}$) $\langle x | x \rangle \ge 0$ and $\langle x | x \rangle = 0 \Leftrightarrow x = 0$.

The associated norm is

$$(\forall x \in \mathcal{H})$$
 $\|x\| = \sqrt{\langle x \mid x \rangle}.$

A (real) Hilbert space \mathcal{H} is a complete pre-Hilbertian space.

▶ Particular case : $\mathcal{H} = \mathbb{R}^N$ (Euclidean space with dimension N).

A (real) Hilbert space \mathcal{H} is a complete pre-Hilbertian space.

▶ Particular case : $\mathcal{H} = \mathbb{R}^N$ (Euclidean space with dimension N).

 \mathcal{H} is the power set of \mathcal{H} , i.e. the family of all subsets of \mathcal{H} .

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. A linear operator $L: \mathcal{H} \to \mathcal{G}$ is bounded if $\|L\| = \sup_{\|x\|_{\mathcal{H}} \le 1} \|Lx\|_{\mathcal{G}} < +\infty$

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. A linear operator $L \colon \mathcal{H} \to \mathcal{G}$ is bounded if $\|L\| = \sup_{\|x\| \le 1} \|Lx\| < +\infty$

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. A linear operator $L \colon \mathcal{H} \to \mathcal{G}$ is bounded if $\|L\| = \sup_{\|x\|=1} \|Lx\| < +\infty$

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. A linear operator $L: \mathcal{H} \to \mathcal{G}$ is bounded if $\|L\| = \sup_{x \in \mathcal{H} \setminus \{0\}} \frac{\|Lx\|}{\|x\|} < +\infty$

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. A linear operator $L \colon \mathcal{H} \to \mathcal{G}$ is bounded if $\|L\| = \sup_{x \in \mathcal{H} \setminus \{0\}} \frac{\|Lx\|}{\|x\|} < +\infty$

- A linear operator from H to G is continuous if and only if it is bounded.
- In finite dimension, every linear operator is bounded.
- In the following, it will be assumed that all the underlying Hilbert spaces are finite dimensional.

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. A linear operator $L \colon \mathcal{H} \to \mathcal{G}$ is bounded if $\|L\| = \sup_{x \in \mathcal{H} \setminus \{0\}} \frac{\|Lx\|}{\|x\|} < +\infty$

- A linear operator from H to G is continuous if and only if it is bounded.
- In finite dimension, every linear operator is bounded.
- In the following, it will be assumed that all the underlying Hilbert spaces are finite dimensional.

 $\mathcal{B}(\mathcal{H},\mathcal{G})$: Banach space of (bounded) linear operators from \mathcal{H} to \mathcal{G} .

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Its adjoint L^* is the operator in $\mathcal{B}(\mathcal{G}, \mathcal{H})$ defined as $(\forall (x, y) \in \mathcal{H} \times \mathcal{G}) \qquad \langle y \mid Lx \rangle_{\mathcal{G}} = \langle L^*y \mid x \rangle_{\mathcal{H}}.$

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Its adjoint L^* is the operator in $\mathcal{B}(\mathcal{G}, \mathcal{H})$ defined as $(\forall (x, y) \in \mathcal{H} \times \mathcal{G}) \qquad \langle y \mid Lx \rangle = \langle L^*y \mid x \rangle.$

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Its adjoint L^* is the operator in $\mathcal{B}(\mathcal{G}, \mathcal{H})$ defined as $(\forall (x, y) \in \mathcal{H} \times \mathcal{G}) \qquad \langle Lx \mid y \rangle = \langle x \mid L^*y \rangle.$

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Its adjoint L^* is the operator in $\mathcal{B}(\mathcal{G}, \mathcal{H})$ defined as $(\forall (x, y) \in \mathcal{H} \times \mathcal{G}) \qquad \langle Lx \mid y \rangle = \langle x \mid L^*y \rangle$.

Example :

If
$$L: \mathcal{H} \to \mathcal{H}^n: x \mapsto (x, \dots, x)$$

then $L^*: \mathcal{H}^n \to \mathcal{H}: y = (y_1, \dots, y_n) \mapsto \sum_{i=1}^n y_i$

$$\frac{\text{Proof}}{\langle Lx \mid y \rangle} = \langle (x, \dots, x) \mid (y_1, \dots, y_n) \rangle = \sum_{i=1}^n \langle x \mid y_i \rangle = \left\langle x \mid \sum_{i=1}^n y_i \right\rangle$$

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Its adjoint L^* is the operator in $\mathcal{B}(\mathcal{G}, \mathcal{H})$ defined as $(\forall (x, y) \in \mathcal{H} \times \mathcal{G}) \qquad \langle Lx \mid y \rangle = \langle x \mid L^*y \rangle.$

• We have
$$||L^*|| = ||L||$$
.

▶ If *L* is bijective (i.e. an isomorphism) then $L^{-1} \in \mathcal{B}(\mathcal{G}, \mathcal{H})$ and $(L^{-1})^* = (L^*)^{-1}$.

• If
$$\mathcal{H} = \mathbb{R}^N$$
 and $\mathcal{G} = \mathbb{R}^M$ then $L^* = L^\top$.

Infinite values functions

Domains of the functions?

Domains of the functions?

Domains of the functions?

Let $C \subset \mathcal{H}$. The indicator function of C is

$$(\forall x \in \mathcal{H})$$
 $\iota_C(x) = \begin{cases} 0 & \text{if } x \in C \\ +\infty & \text{otherwise.} \end{cases}$

Example : $C = [\delta_1, \delta_2]$

10/50

Limits inf and sup

Let $(\xi_n)_{n\in\mathbb{N}}$ be a sequence of elements in $[-\infty, +\infty]$. Its infimum limit is lim inf $\xi_n = \lim_{n \to +\infty} \inf \{\xi_k \mid k \ge n\} \in [-\infty, +\infty]$ and its supremum limit is lim sup $\xi_n = \lim_{n \to +\infty} \sup \{\xi_k \mid k \ge n\} \in [-\infty, +\infty]$.

Limits inf and sup

Let $(\xi_n)_{n\in\mathbb{N}}$ be a sequence of elements in $[-\infty, +\infty]$. Its infimum limit is lim inf $\xi_n = \lim_{n \to +\infty} \inf \{\xi_k \mid k \ge n\} \in [-\infty, +\infty]$ and its supremum limit is lim sup $\xi_n = \lim_{n \to +\infty} \sup \{\xi_k \mid k \ge n\} \in [-\infty, +\infty]$.

▶ $\lim_{n\to+\infty} \xi_n = \overline{\xi} \in [-\infty, +\infty]$ if and only if $\lim \inf \xi_n = \lim \sup \xi_n = \overline{\xi}$.

Epigraph

Let
$$f : \mathcal{H} \to]-\infty, +\infty]$$
. The epigraph of f is
epi $f = \{(x, \zeta) \in \operatorname{dom} f \times \mathbb{R} \mid f(x) \leq \zeta\}$

Epigraph

Let $f : \mathcal{H} \to]-\infty, +\infty]$. f is a lower semi-continuous (l.s.c.) function at $x \in \mathcal{H}$ if, for every sequence $(x_n)_{n \in \mathbb{N}}$ of \mathcal{H} , $x_n \to x \quad \Rightarrow \quad \liminf f(x_n) \ge f(x)$.

Let $f : \mathcal{H} \to]-\infty, +\infty].$

f is a lower semi-continuous function on ${\mathcal H}$ if and only if ${\rm epi}\,f$ is closed

I.s.c. functions?

Let $f : \mathcal{H} \to]-\infty, +\infty].$

f is a lower semi-continuous function on ${\mathcal H}$ if and only if ${\rm epi}\,f$ is closed

I.s.c. functions?

Let $f : \mathcal{H} \to]-\infty, +\infty].$

f is a lower semi-continuous function on ${\mathcal H}$ if and only if ${\rm epi}\,f$ is closed

I.s.c. functions ?

Let $f : \mathcal{H} \to]-\infty, +\infty].$

f is a lower semi-continuous function on ${\mathcal H}$ if and only if ${\rm epi}\,f$ is closed

I.s.c. functions ?

Let $f : \mathcal{H} \to]-\infty, +\infty].$

f is a lower semi-continuous function on ${\mathcal H}$ if and only if ${\rm epi}\,f$ is closed

I.s.c. functions ?

- Every continuous function on H is l.s.c.
- Every finite sum of l.s.c. functions is l.s.c.
- Let (f_i)_{i∈I} be a family of l.s.c functions. Then, sup_{i∈I} f_i is l.s.c.

Does a minimum exist?

Minimizers

Let S be a nonempty set of a Hilbert space \mathcal{H} . Let $f: S \to [-\infty, +\infty]$ be a proper function and let $\hat{x} \in S$. $\triangleright \hat{x}$ is a local minimizer of f if $\hat{x} \in \operatorname{dom} f$ and there exists an open neigborhood O of \hat{x} such that $(\forall x \in O \cap S)$ $f(\hat{x}) \leq f(x).$ $\triangleright \hat{x}$ is a (global) minimizer of f if $(\forall x \in S) \quad f(\widehat{x}) \leq f(x).$

Minimizers

Let S be a nonempty set of a Hilbert space \mathcal{H} . Let $f: S \to [-\infty, +\infty]$ be a proper function and let $\hat{x} \in S$. \triangleright \hat{x} is a strict local minimizer of f if there exists an open neigborhood O of \hat{x} such that $(\forall x \in (O \cap S) \setminus {\widehat{x}}) \quad f(\widehat{x}) < f(x).$ \triangleright \hat{x} is a strict (global and unique) minimizer of f if $(\forall x \in S \setminus {\widehat{x}}) \quad f(\widehat{x}) < f(x).$
Weierstrass theorem

Let S be a nonempty compact set of a Hilbert space \mathcal{H} . Let $f: S \to]-\infty, +\infty]$ be a proper l.s.c function. Then, there exists $\widehat{x} \in S$ such that

 $f(\widehat{x}) = \inf_{x \in S} f(x).$

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$. f is coercive if $\lim_{\|x\|\to+\infty} f(x) = +\infty$.

Let
$$\mathcal{H}$$
 be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$.
 f is coercive if $\lim_{\|x\|\to+\infty} f(x) = +\infty$.

Let
$$\mathcal{H}$$
 be a Hilbert space. Let $f : \mathcal{H} \to]-\infty, +\infty]$.
 f is coercive if $\lim_{\|x\|\to+\infty} f(x) = +\infty$.

Theorem

Let \mathcal{H} be a (finite dimensional) Hilbert space. Let $f : \mathcal{H} \to]-\infty, +\infty]$ be a proper l.s.c. coercive function. Then, the set of minimizers of f is a nonempty compact set.

Theorem

Let \mathcal{H} be a (finite dimensional) Hilbert space. Let $f : \mathcal{H} \to]-\infty, +\infty]$ be a proper l.s.c. coercive function. Then, the set of minimizers of f is a nonempty compact set.

<u>Proof</u>: Since f is proper, there exists $x_0 \in \mathcal{H}$ such that $f(x_0) \in \mathbb{R}$. The coercivity of f implies that there exists $\eta \in]0, +\infty[$ such that, for every $x \in \mathcal{H}$ satisfying $||x - x_0|| > \eta$, $f(x) > f(x_0)$. Let $S = \{x \in \mathcal{H} \mid ||x - x_0|| \le \eta\}$, $S \cap \text{dom } f \neq \emptyset$ and S is compact. Then, there exists $\hat{x} \in S$ such that $f(\hat{x}) = \inf_{x \in S} f(x) \le f(x_0)$. Thus, $f(\hat{x}) = \inf_{x \in \mathcal{H}} f(x)$.

Argmin $f \subset S$ is bounded. In addition, if $(x_n)_{n \in \mathbb{N}}$ is a sequence of minimizers converging to $\hat{x} \in \mathcal{H}$. Then, $f(\hat{x}) \leq \liminf f(x_n) = \inf_{x \in \mathcal{H}} f(x)$ and, consequently, $\hat{x} \in \operatorname{Argmin} f$. Therefore, $\operatorname{Argmin} f$ is closed.

Exercise 1

Let f be the Shannon entropy function defined as

$$f(x) = \begin{cases} \sum_{i=1}^{N} x^{(i)} \ln x^{(i)} & \text{if } x = (x^{(i)})_{1 \le i \le N} \in \]0, +\infty[^{N} + \infty] & \text{if } (\exists j \in \{1, \dots, N\}) \ x^{(j)} < 0. \end{cases}$$

- 1. How can we extend the definition of function f so that it is l.s.c. on \mathbb{R}^N ?
- What can be said about the existence of a minimizer of this function on a nonempty closed subset of the set
 C = {(x⁽ⁱ⁾)_{1≤i≤N} ∈ [0, +∞[^N | ∑^N_{i=1} x⁽ⁱ⁾ = 1}?

Hints from differential calculus

Necessary condition for the existence of a minimizer (Euler's inequality)

Theorem

Let *D* be an open subset of a Hilbert space \mathcal{H} and let $C \subset D$. Let $f: D \rightarrow]-\infty, +\infty]$ be differentiable at $\widehat{x} \in C$. If \widehat{x} is a local minimizer of *f* on *C* then, for every $y \in \mathcal{H}$ such that $[\widehat{x}, y] \subset C$,

$$\langle \nabla f(\widehat{x}) \mid y - \widehat{x} \rangle \geq 0.$$

If $\hat{x} \in int(C)$, then the condition reduces to

$$\nabla f(\widehat{x})=0.$$

Necessary condition for the existence of a minimizer (Euler's inequality)

Theorem

Let *D* be an open subset of a Hilbert space \mathcal{H} and let $C \subset D$. Let $f: D \to]-\infty, +\infty]$ be differentiable at $\widehat{x} \in C$. If \widehat{x} is a local minimizer of *f* on *C* then, for every $y \in \mathcal{H}$ such that $[\widehat{x}, y] \subset C$,

$$\langle \nabla f(\widehat{x}) \mid y - \widehat{x} \rangle \geq 0.$$

If $\hat{x} \in int(C)$, then the condition reduces to

$$\nabla f(\widehat{x}) = 0.$$

<u>Remark</u> : A zero of the gradient ∇f is called a critical point of f.

Necessary condition for the existence of a minimizer

Theorem

Let *C* be an open subset of a Hilbert space \mathcal{H} . Let $f: C \to \mathbb{R}$ be differentiable on *C*. Let *f* be twice differentiable at $\hat{x} \in C$. If If \hat{x} is a local minimizer of *f* on *C*, then

(i)
$$\nabla f(\hat{x}) = 0$$
;
(ii) the Hessian $\nabla^2 f(\hat{x})$ of f at \hat{x} is positive semi-definite, i.e.
 $(\forall z \in \mathcal{H}) \qquad \langle z \mid \nabla^2 f(\hat{x}) z \rangle \ge 0.$

Sufficient conditions for the existence of a minimizer

Theorem

Let C be an open subset of a Hilbert space \mathcal{H} . Let $f: C \to \mathbb{R}$ be differentiable on C.

(i) If f is twice differentiable at $\hat{x} \in C$, $\nabla f(\hat{x}) = 0$ and the Hessian $\nabla^2 f(\hat{x})$ of f at \hat{x} is positive definite, i.e.

$$(\forall z \in \mathcal{H} \setminus \{0\}) \qquad \left\langle z \mid \nabla^2 f(\widehat{x}) z \right\rangle > 0.$$

then f has a strict local minimum at \hat{x} .

Sufficient conditions for the existence of a minimizer

Theorem

Let C be an open subset of a Hilbert space \mathcal{H} . Let $f: C \to \mathbb{R}$ be differentiable on C.

(i) If f is twice differentiable at $\hat{x} \in C$, $\nabla f(\hat{x}) = 0$ and the Hessian $\nabla^2 f(\hat{x})$ of f at \hat{x} is positive definite, i.e.

$$(\forall z \in \mathcal{H} \setminus \{0\}) \qquad \left\langle z \mid \nabla^2 f(\widehat{x}) z \right\rangle > 0.$$

then f has a strict local minimum at \hat{x} .

(ii) If f is twice differentiable on an open neighborhood $D \subset C$ of \hat{x} , $\nabla f(\hat{x}) = 0$ and the Hessian of f is positive semi-definite on D, i.e.

$$(\forall x \in D)(\forall z \in \mathcal{H}) \qquad \langle z \mid \nabla^2 f(x)z \rangle \geq 0,$$

then f has a local minimum at \hat{x} .

Magic of convexity

Convex set : definition

Let \mathcal{H} be a Hilbert space. $\mathcal{C} \subset \mathcal{H}$ is a convex set if

$$(\forall (x,y) \in C^2)(\forall \alpha \in]0,1[) \qquad \alpha x + (1-\alpha)y \in C$$

Convex sets?

Convex set : definition

Let \mathcal{H} be a Hilbert space. $\mathcal{C} \subset \mathcal{H}$ is a convex set if

$$(\forall (x,y) \in C^2)(\forall \alpha \in]0,1[) \qquad \alpha x + (1-\alpha)y \in C$$

Convex sets?

26/50

Convex set : properties

- Ø is considered as a convex set.
- ▶ If *C* is a convex set, then $(\forall n \in \mathbb{N}^*)$ $(\forall (x_1, ..., x_n) \in C^n)$ $(\forall (\alpha_1, ..., \alpha_n) \in [0, +\infty[^n) \text{ with } \sum_{i=1}^n \alpha_i = 1,$ $\sum_{i=1}^n \alpha_i x_i \in C.$

▶ If C is a convex set, then int(C) and \overline{C} are convex sets.

Convex set : properties

▶ If *C* is a convex set then, for every $\alpha \in \mathbb{R}$,

$$\alpha C = \{ \alpha x \mid x \in C \}$$

is a convex set.

▶ If C_1 and C_2 are convex sets, then

$$C_1 \times C_2 C_1 + C_2 = \{x_1 + x_2 \mid (x_1, x_2) \in C_1 \times C_2\}$$

are convex sets.

▶ If
$$(C_i)_{i \in \mathcal{I}}$$
 is a family of convex sets of \mathcal{H} , then $\bigcap_{i \in I} C_i$ is convex.

Convex hull

Let \mathcal{H} be a Hilbert space and $C \subset \mathcal{H}$. The convex hull of C is the smallest convex set including C. It is denoted by conv(C).

conv(C) is the intersection of all the convex sets including C.
 Let x ∈ H. x ∈ conv(C) if and only if (∃n ∈ N*) (∃(x₁,...,x_n) ∈ Cⁿ) (∃(α₁,...,α_n) ∈]0, +∞[ⁿ with ∑_{i=1}ⁿ α_i = 1 such that

$$x=\sum_{i=1}^n\alpha_ix_i.$$

$$f: \mathcal{H} \to]-\infty, +\infty]$$
 is a convex function if
 $(\forall (x, y) \in \mathcal{H}^2)(\forall \alpha \in]0, 1[)$
 $f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$

$$f: \mathcal{H} \to]-\infty, +\infty]$$
 is a convex function if

$$ig(orall (x,y) \in (\mathrm{dom}\, f)^2ig)(orall lpha \in]0,1[) \ f(lpha x + (1-lpha)y) \leq lpha f(x) + (1-lpha)f(y)$$

$$f: \mathcal{H} \to]-\infty, +\infty]$$
 is a convex function if
 $(\forall (x, y) \in (\operatorname{dom} f)^2)(\forall \alpha \in]0, 1[)$
 $f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y)$

Convex functions?

$$f: \mathcal{H} \to]-\infty, +\infty]$$
 is a convex function if
 $(\forall (x, y) \in (\operatorname{dom} f)^2)(\forall \alpha \in]0, 1[)$
 $f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y)$

Convex functions?

$$f: \mathcal{H} \to]-\infty, +\infty]$$
 is a convex function if

$$ig(orall (x,y)\in (\mathrm{dom}\, f)^2ig)(orall lpha\in]0,1[ig) \ f(lpha x+(1-lpha)y)\leq lpha f(x)+(1-lpha)f(y)$$

▶
$$f: \mathcal{H} \to [-\infty, +\infty[$$
 is concave if $-f$ is convex.

 $f:\mathcal{H} \to]-\infty,+\infty]$ is convex \Leftrightarrow its epigraph is a convex set.

 $f:\mathcal{H} \to]-\infty,+\infty]$ is convex \Leftrightarrow its epigraph is a convex set.

 $f: \mathcal{H} \to]-\infty, +\infty]$ is convex \Leftrightarrow its epigraph is a convex set.

Convex functions : properties

If f: H →]-∞, +∞] is convex, then dom f is convex and its lower level set at height η ∈ ℝ

$$\operatorname{lev}_{\leq \eta} f = \{x \in \mathcal{H} \mid f(x) \leq \eta\}$$

is a convex set.

► $f: \mathcal{H} \to]-\infty, +\infty]$ is convex if and only if $(\forall (x, y) \in (\text{dom } f)^2)$ $\varphi_{x,y}: [0,1] \to]-\infty, +\infty]: \alpha \mapsto f(\alpha x + (1 - \alpha)y)$ is convex.

Convex functions : properties

- Every finite sum of convex functions is convex.
- Let $(f_i)_{i \in I}$ be a family of convex functions. Then, $\sup_{i \in I} f_i$ is convex.
- ► $\Gamma_0(\mathcal{H})$: class of convex, l.s.c., and proper functions from \mathcal{H} to $]-\infty, +\infty]$.

► Let $C \subset \mathcal{H}$. $\iota_C \in \Gamma_0(\mathcal{H}) \Leftrightarrow C$ is a nonempty closed convex set. <u>Proof</u> : epi_{$\iota_C} = C × [0, +∞[.$ </sub>

Strictly convex functions

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$. f is strictly convex if

 $\begin{aligned} (\forall x \in \operatorname{dom} f)(\forall y \in \operatorname{dom} f)(\forall \alpha \in]0,1[) \\ x \neq y \quad \Rightarrow \quad f(\alpha x + (1-\alpha)y) < \alpha f(x) + (1-\alpha)f(y). \end{aligned}$

Strictly convex functions

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$. f is strictly convex if

$$(\forall x \in \operatorname{dom} f) (\forall y \in \operatorname{dom} f) (\forall \alpha \in]0, 1[) \ x \neq y \quad \Rightarrow \quad f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y).$$

Strictly convex functions

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$. f is strictly convex if

$$(\forall x \in \operatorname{dom} f) (\forall y \in \operatorname{dom} f) (\forall \alpha \in]0, 1[) \ x \neq y \quad \Rightarrow \quad f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y).$$

Minimizers of a convex function

Theorem

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a proper convex function such that $\mu = \inf f > -\infty$.

•
$$\{x \in \mathcal{H} \mid f(x) = \mu\}$$
 is convex.

- Every local minimizer of *f* is a global minimizer.
- ▶ If *f* is strictly convex, then there exists at most one minimizer.

Minimizers of a convex function

Theorem

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a proper convex function such that $\mu = \inf f > -\infty$.

►
$$\{x \in \mathcal{H} \mid f(x) = \mu\}$$
 is convex.

Every local minimizer of f is a global minimizer.

▶ If *f* is strictly convex, then there exists at most one minimizer.

<u>Proof</u>: Let $\Omega = \{x \in \mathcal{H} \mid f(x) = \mu\}$. Let $(x, y) \in \Omega^2$ and let $\alpha \in [0, 1]$. We have

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) = \mu$$

which shows that $\alpha x + (1 - \alpha)y \in \Omega$.

Minimizers of a convex function

Theorem

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a proper convex function such that $\mu = \inf f > -\infty$.

►
$$\{x \in \mathcal{H} \mid f(x) = \mu\}$$
 is convex.

Every local minimizer of f is a global minimizer.

▶ If *f* is strictly convex, then there exists at most one minimizer.

<u>Proof</u>: Let \hat{x} be a local minimizer of f. For every $y \in \mathcal{H} \setminus {\hat{x}}$, there exists $\alpha \in]0,1[$ such that

$$\begin{aligned} f(\widehat{x}) &\leq f(\widehat{x} + \alpha(y - \widehat{x})) \leq (1 - \alpha)f(\widehat{x}) + \alpha f(y) \\ \Rightarrow & f(\widehat{x}) \leq f(y) \end{aligned}$$

If f is strictly convex, the inequality is strict.

Existence and uniqueness of a minimizer

Theorem

Let \mathcal{H} be a Hilbert space and C a closed convex subset of \mathcal{H} . Let $f \in \Gamma_0(\mathcal{H})$ such that dom $f \cap C \neq \emptyset$.

If f is coercive or C is bounded, then there exists $\widehat{x} \in C$ such that

 $f(\widehat{x}) = \inf_{x \in C} f(x).$

If, moreover, f is strictly convex, this minimizer \hat{x} is unique.
Exercise 2

Let \mathcal{H} be a Hilbert space.

- 1. Show that the function $x \mapsto ||x||^2$ is strictly convex.
- 2. A function $f: \mathcal{H} \to]-\infty, +\infty]$ is strongly convex with modulus $\beta \in]0, +\infty[$ if there exists a convex function $g: \mathcal{H} \to]-\infty, +\infty]$ such that

$$f = g + \frac{\beta}{2} \| \cdot \|^2$$

Show that that every strongly convex function is strictly convex.

3. Show that a function $f: \mathcal{H} \to]-\infty, +\infty]$ is strongly convex with modulus $\beta \in]0, +\infty[$ if and only if

$$egin{aligned} &(orall (x,y)\in\mathcal{H}^2)(orall lpha\in]0,1[)\ &f(lpha x+(1-lpha)y)+lpha(1-lpha)rac{eta}{2}\|x-y\|^2\leqlpha f(x)+(1-lpha)f(y). \end{aligned}$$

Convex + smooth

Characterization of differentiable convex functions

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be differentiable on dom f, which is a nonempty open convex set. Then f is server if and entrif

Then, f is convex if and only if

 $(\forall (x,y) \in (\operatorname{dom} f)^2) \quad f(y) \geq f(x) + \langle \nabla f(x) \mid y - x \rangle.$

Characterization of differentiable strictly convex functions

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be differentiable on dom f, which is a nonempty open convex set. Then, f is strictly convex if and only if, for every $(x, y) \in (\text{dom } f)^2$ with $x \neq y$,

 $f(y) > f(x) + \langle \nabla f(x) \mid y - x \rangle$.

Characterization of differentiable convex functions

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be differentiable on dom f, which is a nonempty open convex set. Then, f is convex if and only if ∇f is monotone on dom f, i.e. $(\forall (x, y) \in (\operatorname{dom} f)^2) \quad \langle \nabla f(y) - \nabla f(x) \mid y - x \rangle \ge 0.$

Characterization of strictly differentiable convex functions

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be differentiable on dom f, which is a nonempty open convex set. Then, f is strictly convex if and only if ∇f is strictly monotone on dom f, i.e. for every $(x, y) \in (\operatorname{dom} f)^2$ with $x \neq y$, $\langle \nabla f(y) - \nabla f(x) | y - x \rangle > 0.$

Characterization of twice differentiable convex functions

Let \mathcal{H} be a Hilbert space.

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a twice differentiable function on dom f, which is a nonempty open convex set.

- ▶ *f* is convex if and only if, for every $x \in \text{dom } f$, $\nabla^2 f(x)$ is positive semi-definite.
- If, for every x ∈ dom f, ∇²f(x) is positive definite, then f is strictly convex.

Condition for the existence of a minimizer

Theorem

Let \mathcal{H} be Hilbert space.

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a differentiable convex function on dom f, which is an open set. Let $C \subset \text{dom } f$ be a nonempty convex set. $\hat{x} \in C$ is a (global) minimizer of f on C if and only if

$$(\forall y \in C) \qquad \langle \nabla f(\widehat{x}) \mid y - \widehat{x} \rangle \geq 0.$$

If $\hat{x} \in int(C)$, then the condition reduces to

 $\nabla f(\widehat{x}) = 0.$

Condition for the existence of a minimizer

Theorem

Let \mathcal{H} be Hilbert space.

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a differentiable convex function on dom f, which is an open set. Let $C \subset \text{dom } f$ be a nonempty convex set. $\hat{x} \in C$ is a (global) minimizer of f on C if and only if

$$(\forall y \in C) \qquad \langle \nabla f(\widehat{x}) \mid y - \widehat{x} \rangle \geq 0.$$

If $\hat{x} \in int(C)$, then the condition reduces to

$$\nabla f(\widehat{x}) = 0.$$

<u>Proof</u>: We have already seen that the inequality is a necessary condition for \hat{x} to be a local minimizer of f on C and that it reduces to the vanishing condition on the gradient if $\hat{x} \in int(C)$.

Condition for the existence of a minimizer

Theorem

Let \mathcal{H} be Hilbert space.

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a differentiable convex function on dom f, which is an open set. Let $C \subset \text{dom } f$ be a nonempty convex set. $\hat{x} \in C$ is a (global) minimizer of f on C if and only if

$$(\forall y \in C) \qquad \langle
abla f(\widehat{x}) \mid y - \widehat{x} \rangle \geq 0.$$

If $\hat{x} \in int(C)$, then the condition reduces to

$$\nabla f(\widehat{x}) = 0.$$

<u>Proof</u> : Conversely, assume that the inequality holds. Let $y \in C$. Since f is convex and Gâteaux differentiable,

$$f(y) \ge f(\widehat{x}) + \langle
abla f(\widehat{x}) \mid y - \widehat{x} \rangle \ge f(\widehat{x}).$$

Hence, \hat{x} is a minimizer of f on C.

Exercice 3

Let $f : \mathcal{H} \to \mathbb{R}$ be differentiable. Show that f is β -strongly convex if and only if

$$(orall (x,y)\in \mathcal{H}^2) \quad f(y)\geq f(x)+\langle
abla f(x)\mid y-x
angle+rac{eta}{2}\|y-x\|^2.$$

Exercice 4

Let

$$f: \mathbb{R}^N \to \mathbb{R}$$
$$(x^{(i)})_{1 \le i \le N} \mapsto \ln\left(\sum_{i=1}^N \exp(x^{(i)})\right).$$

Show that f is convex. Is it strictly convex?

Projections

Projection onto a closed convex set

Theorem

Let C be a nonempty closed convex set of a Hilbert space \mathcal{H} .

(i) For every x ∈ H, there exists a unique point x̂ in C which lies at minimum distance of x. The application P_C: H → C which maps every x ∈ H to its associated point x̂ is called the projection onto C.
(ii) For every x ∈ H, x̂ = P_C(x) if and only if x̂ ∈ C and

$$(\forall y \in C) \qquad \langle x - \widehat{x} \mid y - \widehat{x} \rangle \leq 0.$$

Geometrical interpretation

Let *C* be a nonempty subset of *H*. For every $x \in H$, the normal cone to *C* at *x* is defined as $N_{C}(x) = \begin{cases} \{u \in H \mid (\forall y \in C) \ \langle u \mid y - x \rangle \leq 0 \} & \text{if } x \in C \\ \varnothing & \text{otherwise.} \end{cases}$

Geometrical interpretation

Let C be a nonempty subset of \mathcal{H} . For every $x \in \mathcal{H}$, the normal cone to C at x is defined as $N_{C}(x) = \begin{cases} \{u \in \mathcal{H} \mid (\forall y \in C) \ \langle u \mid y - x \rangle \leq 0 \} & \text{if } x \in C \\ \varnothing & \text{otherwise.} \end{cases}$

- If $x \in \text{int } C$, then $N_C(x) = \{0\}$.
- ▶ If C is a vector space, then for every $x \in C$, $N_C(x) = C^{\perp}$.
- ▶ Let *C* be nonempty closed convex set of a Hilbert space \mathcal{H} . For every $x \in \mathcal{H}$,

$$\widehat{x} = P_C(x) \quad \Leftrightarrow \quad x - \widehat{x} \in N_C(\widehat{x}).$$

Examples of projections

▶ If C is a (closed) vector space of a Hilbert space \mathcal{H} , then P_C is the (linear) orthogonal projection onto C. Then, for every $x \in \mathcal{H}$,

$$\widehat{x} = P_C(x) \quad \Leftrightarrow \quad \begin{cases} \widehat{x} \in C \\ x - \widehat{x} \in C^{\perp}. \end{cases}$$

Properties of the projection

Let C be a nonempty closed convex set of a Hilbert space \mathcal{H} . The projection onto C is a firmly nonexpansive operator, i.e.

$$(\forall (x,y) \in \mathcal{H}^2)$$
 $||P_C(x) - P_C(y)||^2 \le \langle x - y \mid P_C(x) - P_C(y) \rangle.$

Properties of the projection

Let C be a nonempty closed convex set of a Hilbert space \mathcal{H} . The projection onto C is a firmly nonexpansive operator, i.e.

$$(\forall (x,y) \in \mathcal{H}^2)$$
 $||P_C(x) - P_C(y)||^2 \le \langle x - y \mid P_C(x) - P_C(y) \rangle.$

Properties of the projection

Let C be a nonempty closed convex set of a Hilbert space H. The projection onto C is a firmly nonexpansive operator, i.e.

$$(\forall (x,y) \in \mathcal{H}^2)$$
 $\|P_C(x) - P_C(y)\|^2 \leq \langle x - y \mid P_C(x) - P_C(y) \rangle.$

• The projection onto C is a nonexpansive operator , i.e.

$$(\forall (x,y) \in \mathcal{H}^2)$$
 $||P_C(x) - P_C(y)|| \le ||x - y||.$

The projection onto C is uniformly continuous.
 The distance to C defined as

$$(\forall x \in \mathcal{H})$$
 $d_C(x) = \inf_{y \in C} ||x - y|| = ||x - P_C(x)||$

is continuous.

Exercise 5

Let \mathcal{H} and \mathcal{G} be Hilbert spaces. Let D be a nonempty closed convex set of \mathcal{G} . Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$ be a bijective isometry and let

$$C = \{x \in \mathcal{H} \mid Lx \in D\}.$$

- 1. Show that the projection onto C is well-defined.
- 2. Show that $P_C = L^* \circ P_D \circ L$.
- 3. Express P_C when $\mathcal{H} = \mathcal{G} = \mathbb{R}^N$ and $D = [0, +\infty[^N.$