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A few mathematical background
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Hilbert spaces

A (real) pre-Hilbertian space H is a real vector space endowed with a

function 〈· | ·〉 : H2 → R, called inner product such that

➀ (∀(x , y) ∈ H2) 〈x | y〉 = 〈y | x〉
➁ (∀(x , y , z) ∈ H3) 〈x + y | z〉 = 〈x | z〉+ 〈y | z〉
➂ (∀(x , y) ∈ H2) (∀α ∈ R) 〈αx | y〉 = α 〈y | x〉
➃ (∀x ∈ H) 〈x | x〉 ≥ 0 and

〈x | x〉 = 0 ⇔ x = 0.

◮ The associated norm is

(∀x ∈ H) ‖x‖ =
√

〈x | x〉.
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Hilbert spaces

A (real) Hilbert space H is a complete pre-Hilbertian space.

◮ Particular case : H = R
N (Euclidean space with dimension N).



5/50

Hilbert spaces

A (real) Hilbert space H is a complete pre-Hilbertian space.

◮ Particular case : H = R
N (Euclidean space with dimension N).

2H is the power set of H, i.e. the family of all subsets of H.
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Hilbert spaces

Let H and G be two Hilbert spaces.
A linear operator L : H → G is bounded if

‖L‖ = sup
‖x‖H≤1

‖Lx‖G < +∞
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Hilbert spaces

Let H and G be two Hilbert spaces.
A linear operator L : H → G is bounded if

‖L‖ = sup
x∈H\{0}

‖Lx‖

‖x‖
< +∞
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Hilbert spaces

Let H and G be two Hilbert spaces.
A linear operator L : H → G is bounded if

‖L‖ = sup
x∈H\{0}

‖Lx‖

‖x‖
< +∞

◮ A linear operator from H to G is continuous if and only if it is
bounded.

◮ In finite dimension, every linear operator is bounded.

◮ In the following, it will be assumed that all the underlying Hilbert
spaces are finite dimensional.
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Hilbert spaces

Let H and G be two Hilbert spaces.
A linear operator L : H → G is bounded if

‖L‖ = sup
x∈H\{0}

‖Lx‖

‖x‖
< +∞

◮ A linear operator from H to G is continuous if and only if it is
bounded.

◮ In finite dimension, every linear operator is bounded.

◮ In the following, it will be assumed that all the underlying Hilbert
spaces are finite dimensional.

B(H,G) : Banach space of (bounded) linear operators from H to G.



7/50

Hilbert spaces

Let H and G be two Hilbert spaces.
Let L ∈ B(H,G). Its adjoint L∗ is the operator in B(G,H) defined as

(∀(x , y) ∈ H × G) 〈y | Lx〉G = 〈L∗y | x〉H .
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Hilbert spaces

Let H and G be two Hilbert spaces.
Let L ∈ B(H,G). Its adjoint L∗ is the operator in B(G,H) defined as

(∀(x , y) ∈ H× G) 〈Lx | y〉 = 〈x | L∗y〉 .

Example :

If L : H → Hn : x 7→ (x , . . . , x)

then L∗ : Hn → H : y = (y1, . . . , yn) 7→
n∑

i=1

yi

Proof :

〈Lx | y〉 = 〈(x , . . . , x) | (y1, . . . , yn)〉 =
n∑

i=1

〈x | yi 〉 =

〈
x |

n∑

i=1

yi

〉
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Hilbert spaces

Let H and G be two Hilbert spaces.
Let L ∈ B(H,G). Its adjoint L∗ is the operator in B(G,H) defined as

(∀(x , y) ∈ H× G) 〈Lx | y〉 = 〈x | L∗y〉 .

◮ We have ‖L∗‖ = ‖L‖.

◮ If L is bijective (i.e. an isomorphism ) then L−1 ∈ B(G,H) and

(L−1)∗ = (L∗)−1.

◮ If H = R
N and G = R

M then L∗ = L⊤.
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Infinite values functions
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Functional analysis : definitions

Let S be a nonempty set of a Hilbert space H.

Let f : S →]−∞, +∞] .

◮ The domain of f is dom f = {x ∈ S | f (x) < +∞}.
◮ The function f is proper if dom f 6= ∅.

Domains of the functions ?

x

f (x)

x

f (x)

δ
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Let S be a nonempty set of a Hilbert space H.

Let f : S →]−∞, +∞] .

◮ The domain of f is dom f = {x ∈ S | f (x) < +∞}.
◮ The function f is proper if dom f 6= ∅.

Domains of the functions ?

x

f (x)

dom f = R

(proper)

x

f (x)

δ



9/50

Functional analysis : definitions

Let S be a nonempty set of a Hilbert space H.

Let f : S →]−∞, +∞] .

◮ The domain of f is dom f = {x ∈ S | f (x) < +∞}.
◮ The function f is proper if dom f 6= ∅.

Domains of the functions ?

x

f (x)

dom f = R

(proper)

x

f (x)

δ

dom f =]0, δ]
(proper)
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Functional analysis : definitions

Let C ⊂ H.
The indicator function of C is

(∀x ∈ H) ιC (x) =

{
0 if x ∈ C

+∞ otherwise.

Example : C = [δ1, δ2]
f (x) = ι[δ1,δ2](x)

δ1 xδ2
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Limits inf and sup

Let (ξn)n∈N be a sequence of elements in [−∞,+∞].

Its infimum limit is lim inf ξn = limn→+∞ inf
{
ξk
∣∣ k ≥ n

}
∈ [−∞,+∞]

and its supremum limit is lim sup ξn = limn→+∞ sup
{
ξk
∣∣ k ≥ n

}
∈

[−∞,+∞].
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Limits inf and sup

Let (ξn)n∈N be a sequence of elements in [−∞,+∞].

Its infimum limit is lim inf ξn = limn→+∞ inf
{
ξk
∣∣ k ≥ n

}
∈ [−∞,+∞]

and its supremum limit is lim sup ξn = limn→+∞ sup
{
ξk
∣∣ k ≥ n

}
∈

[−∞,+∞].

◮ lim sup ξn = − lim inf(−ξn)

◮ lim inf ξn ≤ lim sup ξn

◮ limn→+∞ ξn = ξ ∈ [−∞,+∞] if and only if lim inf ξn = lim sup ξn = ξ.
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Epigraph

Let f : H → ]−∞,+∞]. The epigraph of f is

epi f =
{
(x , ζ) ∈ dom f × R

∣∣ f (x) ≤ ζ
}
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Epigraph

Let f : H → ]−∞,+∞]. The epigraph of f is

epi f =
{
(x , ζ) ∈ dom f × R

∣∣ f (x) ≤ ζ
}

x

f (x) = |x |

epif

xδ−δ

f (x) = ι[−δ,δ](x)

epif
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Lower semi-continuity

Let f : H → ]−∞,+∞].

f is a lower semi-continuous (l.s.c.) function at x ∈ H if, for every se-
quence (xn)n∈N of H,

xn → x ⇒ lim inf f (xn) ≥ f (x).
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Lower semi-continuity

Let f : H → ]−∞,+∞].
f is a lower semi-continuous function on H if and only if epi f is closed

◮ l.s.c. functions ?

x

f (x)

x

f (x)



13/50

Lower semi-continuity

Let f : H → ]−∞,+∞].
f is a lower semi-continuous function on H if and only if epi f is closed

◮ l.s.c. functions ?

f (x)

x
x

f (x)



13/50

Lower semi-continuity

Let f : H → ]−∞,+∞].
f is a lower semi-continuous function on H if and only if epi f is closed

◮ l.s.c. functions ?

x

f (x)

x

f (x)



13/50

Lower semi-continuity

Let f : H → ]−∞,+∞].
f is a lower semi-continuous function on H if and only if epi f is closed

◮ l.s.c. functions ?

x

f (x)

x

f (x)



13/50

Lower semi-continuity

Let f : H → ]−∞,+∞].
f is a lower semi-continuous function on H if and only if epi f is closed

◮ l.s.c. functions ?

x

f (x)

x

f (x)
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Lower semi-continuity

◮ Every continuous function on H is l.s.c.

◮ Every finite sum of l.s.c. functions is l.s.c.

◮ Let (fi )i∈I be a family of l.s.c functions.
Then, supi∈I fi is l.s.c.
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Does a minimum exist ?
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Minimizers

Let S be a nonempty set of a Hilbert space H.
Let f : S → ]−∞,+∞] be a proper function and let x̂ ∈ S .

◮ x̂ is a local minimizer of f if x̂ ∈ dom f and there exists an open
neigborhood O of x̂ such that

(∀x ∈ O ∩ S) f (x̂) ≤ f (x).

◮ x̂ is a (global) minimizer of f if

(∀x ∈ S) f (x̂) ≤ f (x).
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Minimizers

Let S be a nonempty set of a Hilbert space H.
Let f : S → ]−∞,+∞] be a proper function and let x̂ ∈ S .

◮ x̂ is a strict local minimizer of f if there exists an open neigborhood
O of x̂ such that

(∀x ∈ (O ∩ S) \ {x̂}) f (x̂) < f (x).

◮ x̂ is a strict (global and unique) minimizer of f if

(∀x ∈ S \ {x̂}) f (x̂) < f (x).
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Existence of a minimizer

Weierstrass theorem

Let S be a nonempty compact set of a Hilbert space H.
Let f : S → ]−∞,+∞] be a proper l.s.c function.
Then, there exists x̂ ∈ S such that

f (x̂) = inf
x∈S

f (x).
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Existence of a minimizer

Let H be a Hilbert space. Let f : H → ]−∞,+∞].
f is coercive if lim‖x‖→+∞ f (x) = +∞.
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Existence of a minimizer

Let H be a Hilbert space. Let f : H → ]−∞,+∞].
f is coercive if lim‖x‖→+∞ f (x) = +∞.

Coercive functions ?

x

f (x)

+∞

x

f (x)

+∞

x

f (x)

+∞
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Existence of a minimizer

Let H be a Hilbert space. Let f : H → ]−∞,+∞].
f is coercive if lim‖x‖→+∞ f (x) = +∞.

Coercive functions ?

x

f (x)

+∞

x

f (x)

+∞

x

f (x)

+∞



19/50

Existence of a minimizer

Theorem

Let H be a (finite dimensional) Hilbert space.
Let f : H → ]−∞,+∞] be a proper l.s.c. coercive function.
Then, the set of minimizers of f is a nonempty compact set.
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Existence of a minimizer

Theorem

Let H be a (finite dimensional) Hilbert space.
Let f : H → ]−∞,+∞] be a proper l.s.c. coercive function.
Then, the set of minimizers of f is a nonempty compact set.

Proof : Since f is proper, there exists x0 ∈ H such that f (x0) ∈ R. The
coercivity of f implies that there exists η ∈ ]0,+∞[ such that, for every
x ∈ H satisfying ‖x − x0‖ > η, f (x) > f (x0).
Let S =

{
x ∈ H

∣∣ ‖x − x0‖ ≤ η
}
, S ∩ dom f 6= ∅ and S is compact.

Then, there exists x̂ ∈ S such that f (x̂) = infx∈S f (x) ≤ f (x0). Thus,
f (x̂) = infx∈H f (x).
Argminf ⊂ S is bounded. In addition, if (xn)n∈N is a sequence of
minimizers converging to x̂ ∈ H. Then, f (x̂) ≤ lim inf f (xn) = infx∈H f (x)
and, consequently, x̂ ∈ Argminf . Therefore, Argminf is closed.
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Exercise 1

Let f be the Shannon entropy function defined as

f (x) =





N∑

i=1

x(i) ln x(i) if x = (x(i))1≤i≤N ∈ ]0,+∞[N

+∞ if (∃j ∈ {1, . . . ,N}) x(j) < 0.

1. How can we extend the definition of function f so that it is l.s.c. on
R
N ?

2. What can be said about the existence of a minimizer of this function
on a nonempty closed subset of the set
C =

{
(x(i))1≤i≤N ∈ [0,+∞[N

∣∣ ∑N
i=1 x

(i) = 1
}
?
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Hints from differential calculus
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Necessary condition for the existence of a minimizer

(Euler’s inequality)

Theorem

Let D be an open subset of a Hilbert space H and let C ⊂ D. Let f : D →
]−∞,+∞] be differentiable at x̂ ∈ C . If x̂ is a local minimizer of f on C

then, for every y ∈ H such that [x̂ , y ] ⊂ C ,

〈∇f (x̂) | y − x̂〉 ≥ 0.

If x̂ ∈ int (C ), then the condition reduces to

∇f (x̂) = 0.
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Necessary condition for the existence of a minimizer

(Euler’s inequality)

Theorem

Let D be an open subset of a Hilbert space H and let C ⊂ D. Let f : D →
]−∞,+∞] be differentiable at x̂ ∈ C . If x̂ is a local minimizer of f on C

then, for every y ∈ H such that [x̂ , y ] ⊂ C ,

〈∇f (x̂) | y − x̂〉 ≥ 0.

If x̂ ∈ int (C ), then the condition reduces to

∇f (x̂) = 0.

Remark : A zero of the gradient ∇f is called a critical point of f .
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Necessary condition for the existence of a minimizer

Theorem

Let C be an open subset of a Hilbert space H. Let f : C → R be diffe-
rentiable on C . Let f be twice differentiable at x̂ ∈ C . If If x̂ is a local
minimizer of f on C , then

(i) ∇f (x̂) = 0 ;
(ii) the Hessian ∇2f (x̂) of f at x̂ is positive semi-definite, i.e.

(∀z ∈ H)
〈
z | ∇2f (x̂)z

〉
≥ 0.
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Sufficient conditions for the existence of a minimizer

Theorem

Let C be an open subset of a Hilbert space H. Let f : C → R be differen-
tiable on C .

(i) If f is twice differentiable at x̂ ∈ C , ∇f (x̂) = 0 and the Hessian
∇2f (x̂) of f at x̂ is positive definite, i.e.

(∀z ∈ H \ {0})
〈
z | ∇2f (x̂)z

〉
> 0.

then f has a strict local minimum at x̂ .
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Sufficient conditions for the existence of a minimizer

Theorem

Let C be an open subset of a Hilbert space H. Let f : C → R be differen-
tiable on C .

(i) If f is twice differentiable at x̂ ∈ C , ∇f (x̂) = 0 and the Hessian
∇2f (x̂) of f at x̂ is positive definite, i.e.

(∀z ∈ H \ {0})
〈
z | ∇2f (x̂)z

〉
> 0.

then f has a strict local minimum at x̂ .
(ii) If f is twice differentiable on an open neighborhood D ⊂ C of x̂ ,

∇f (x̂) = 0 and the Hessian of f is positive semi-definite on D, i.e.

(∀x ∈ D)(∀z ∈ H)
〈
z | ∇2f (x)z

〉
≥ 0,

then f has a local minimum at x̂ .
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Magic of convexity
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Convex set : definition

Let H be a Hilbert space. C ⊂ H is a convex set if

(∀(x , y) ∈ C 2)(∀α ∈]0, 1[) αx + (1− α)y ∈ C

Convex sets ?

C C
C



26/50

Convex set : definition
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(∀(x , y) ∈ C 2)(∀α ∈]0, 1[) αx + (1− α)y ∈ C

Convex sets ?

C C
C
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Convex set : properties

◮ ∅ is considered as a convex set.

◮ If C is a convex set, then (∀n ∈ N
∗) (∀(x1, . . . , xn) ∈ Cn)

(∀(α1, . . . , αn) ∈ [0,+∞[n) with
n∑

i=1

αi = 1,

n∑

i=1

αixi ∈ C .

◮ Every vector (affine) space is convex.

◮ If C is a convex set, then int (C ) and C are convex sets.
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Convex set : properties

◮ If C is a convex set then, for every α ∈ R,

αC =
{
αx
∣∣ x ∈ C

}

is a convex set.

◮ If C1 and C2 are convex sets, then

C1 × C2

C1 + C2 =
{
x1 + x2

∣∣ (x1, x2) ∈ C1 × C2

}

are convex sets.

◮ If (Ci )i∈I is a family of convex sets of H, then
⋂

i∈I

Ci is convex.
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Convex hull

Let H be a Hilbert space and C ⊂ H. The convex hull of C is the smallest
convex set including C . It is denoted by conv(C ).

◮ conv(C ) is the intersection of all the convex sets including C .

◮ Let x ∈ H. x ∈ conv(C ) if and only if (∃n ∈ N
∗) (∃(x1, . . . , xn) ∈ Cn)

(∃(α1, . . . , αn) ∈ ]0,+∞[n with

n∑

i=1

αi = 1 such that

x =
n∑

i=1

αixi .
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Convex function : definitions

f : H → ]−∞,+∞] is a convex function if

(
∀(x , y) ∈ H2

)
(∀α ∈]0, 1[)

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)
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Convex function : definitions

f : H → ]−∞,+∞] is a convex function if

(
∀(x , y) ∈ (dom f )2

)
(∀α ∈]0, 1[)

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)
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Convex function : definitions

f : H → ]−∞,+∞] is a convex function if

(
∀(x , y) ∈ (dom f )2

)
(∀α ∈]0, 1[)

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)

Convex functions ?

x

f (x) = |x |

x

f (x) =
√
|x |

+∞ sinon)

xδ−δ

f (x) = ι[−δ,δ](x)

(0 si x ∈ [−δ, δ]
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(
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)
(∀α ∈]0, 1[)

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)

Convex functions ?
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f (x) =
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|x |

+∞ sinon)
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Convex function : definitions

f : H → ]−∞,+∞] is a convex function if

(
∀(x , y) ∈ (dom f )2

)
(∀α ∈]0, 1[)

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)

◮ f : H → [−∞,+∞[ is concave if −f is convex.
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Convex functions : definition

f : H → ]−∞,+∞] is convex ⇔ its epigraph is a convex set.
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Convex functions : definition

f : H → ]−∞,+∞] is convex ⇔ its epigraph is a convex set.

x

f (x) = |x |

epif

x

f (x) =
√
|x |

epif

xδ−δ

f (x) = ι[−δ,δ](x)

epif
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Convex functions : properties

◮ If f : H → ]−∞,+∞] is convex, then dom f is convex and its

lower level set at height η ∈ R

lev≤η f =
{
x ∈ H

∣∣ f (x) ≤ η
}

is a convex set.

◮ f : H → ]−∞,+∞] is convex if and only if (∀(x , y) ∈ (dom f )2)
ϕx ,y : [0, 1] → ]−∞,+∞] : α 7→ f (αx + (1− α)y) is convex.
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Convex functions : properties

◮ Every finite sum of convex functions is convex.

◮ Let (fi )i∈I be a family of convex functions. Then, supi∈I fi is convex.

◮ Γ0(H) : class of convex, l.s.c., and proper functions from H to

]−∞,+∞].

◮ Let C ⊂ H.
ιC ∈ Γ0(H) ⇔ C is a nonempty closed convex set.
Proof : epiιC = C × [0,+∞[.
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Strictly convex functions

Let H be a Hilbert space. Let f : H → ]−∞,+∞].

f is strictly convex if

(∀x ∈ dom f )(∀y ∈ dom f )(∀α ∈]0, 1[)

x 6= y ⇒ f (αx + (1− α)y) < αf (x) + (1− α)f (y).
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Let H be a Hilbert space. Let f : H → ]−∞,+∞].
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x

f (x)

x

f (x)

x

f (x)
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Strictly convex functions

Let H be a Hilbert space. Let f : H → ]−∞,+∞].

f is strictly convex if

(∀x ∈ dom f )(∀y ∈ dom f )(∀α ∈]0, 1[)

x 6= y ⇒ f (αx + (1− α)y) < αf (x) + (1− α)f (y).

Strictly convex functions ?

x

f (x)

x

f (x)

x

f (x)
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Minimizers of a convex function

Theorem

Let H be a Hilbert space. Let f : H → ]−∞,+∞] be a proper convex
function such that µ = inf f > −∞.

◮
{
x ∈ H

∣∣ f (x) = µ
}
is convex.

◮ Every local minimizer of f is a global minimizer.

◮ If f is strictly convex, then there exists at most one minimizer.
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Minimizers of a convex function

Theorem

Let H be a Hilbert space. Let f : H → ]−∞,+∞] be a proper convex
function such that µ = inf f > −∞.

◮
{
x ∈ H

∣∣ f (x) = µ
}
is convex.

◮ Every local minimizer of f is a global minimizer.

◮ If f is strictly convex, then there exists at most one minimizer.

Proof : Let Ω =
{
x ∈ H

∣∣ f (x) = µ
}
. Let (x , y) ∈ Ω2 and let α ∈ [0, 1].

We have
f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y) = µ

which shows that αx + (1− α)y ∈ Ω.
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Minimizers of a convex function

Theorem

Let H be a Hilbert space. Let f : H → ]−∞,+∞] be a proper convex
function such that µ = inf f > −∞.

◮
{
x ∈ H

∣∣ f (x) = µ
}
is convex.

◮ Every local minimizer of f is a global minimizer.

◮ If f is strictly convex, then there exists at most one minimizer.

Proof : Let x̂ be a local minimizer of f . For every y ∈ H \ {x̂}, there
exists α ∈]0, 1[ such that

f (x̂) ≤ f
(
x̂ + α(y − x̂)

)
≤ (1− α)f (x̂) + αf (y)

⇒ f (x̂) ≤ f (y)

If f is strictly convex, the inequality is strict.
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Existence and uniqueness of a minimizer

Theorem

Let H be a Hilbert space and C a closed convex subset of H. Let f ∈ Γ0(H)
such that dom f ∩ C 6= ∅.
If f is coercive or C is bounded, then there exists x̂ ∈ C such that

f (x̂) = inf
x∈C

f (x).

If, moreover, f is strictly convex, this minimizer x̂ is unique.
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Exercise 2

Let H be a Hilbert space.

1. Show that the function x 7→ ‖x‖2 is strictly convex.

2. A function f : H → ]−∞,+∞] is strongly convex with modulus
β ∈ ]0,+∞[ if there exists a convex function g : H → ]−∞,+∞]
such that

f = g +
β

2
‖ · ‖2.

Show that that every strongly convex function is strictly convex.

3. Show that a function f : H → ]−∞,+∞] is strongly convex with
modulus β ∈ ]0,+∞[ if and only if

(∀(x , y) ∈ H2)(∀α ∈]0, 1[)

f (αx + (1− α)y) + α(1− α)
β

2
‖x − y‖2 ≤ αf (x) + (1− α)f (y).
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Convex + smooth
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Characterization of differentiable convex functions

Let f : H → ]−∞,+∞] be differentiable on dom f , which is a nonempty
open convex set.
Then, f is convex if and only if

(∀(x , y) ∈ (dom f )2) f (y) ≥ f (x) + 〈∇f (x) | y − x〉 .
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Characterization of differentiable strictly convex functions

Let f : H → ]−∞,+∞] be differentiable on dom f , which is a nonempty
open convex set.
Then, f is strictly convex if and only if, for every (x , y) ∈ (dom f )2 with
x 6= y ,

f (y) > f (x) + 〈∇f (x) | y − x〉 .
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Characterization of differentiable convex functions

Let f : H → ]−∞,+∞] be differentiable on dom f , which is a nonempty
open convex set.
Then, f is convex if and only if ∇f is monotone on dom f , i.e.

(∀(x , y) ∈ (dom f )2) 〈∇f (y)−∇f (x) | y − x〉 ≥ 0.
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Characterization of strictly differentiable convex functions

Let f : H → ]−∞,+∞] be differentiable on dom f , which is a nonempty
open convex set.
Then, f is strictly convex if and only if ∇f is strictly monotone on dom f ,
i.e. for every (x , y) ∈ (dom f )2 with x 6= y ,

〈∇f (y)−∇f (x) | y − x〉 > 0.
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Characterization of twice differentiable convex functions

Let H be a Hilbert space.
Let f : H → ]−∞,+∞] be a twice differentiable function on dom f , which
is a nonempty open convex set.

◮ f is convex if and only if, for every x ∈ dom f , ∇2f (x) is positive
semi-definite.

◮ If, for every x ∈ dom f , ∇2f (x) is positive definite, then f is strictly
convex.
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Condition for the existence of a minimizer

Theorem

Let H be Hilbert space.
Let f : H → ]−∞,+∞] be a differentiable convex function on dom f ,
which is an open set. Let C ⊂ dom f be a nonempty convex set. x̂ ∈ C is
a (global) minimizer of f on C if and only if

(∀y ∈ C ) 〈∇f (x̂) | y − x̂〉 ≥ 0.

If x̂ ∈ int (C ), then the condition reduces to

∇f (x̂) = 0.
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Condition for the existence of a minimizer

Theorem

Let H be Hilbert space.
Let f : H → ]−∞,+∞] be a differentiable convex function on dom f ,
which is an open set. Let C ⊂ dom f be a nonempty convex set. x̂ ∈ C is
a (global) minimizer of f on C if and only if

(∀y ∈ C ) 〈∇f (x̂) | y − x̂〉 ≥ 0.

If x̂ ∈ int (C ), then the condition reduces to

∇f (x̂) = 0.

Proof : We have already seen that the inequality is a necessary condition for
x̂ to be a local minimizer of f on C and that it reduces to the vanishing
condition on the gradient if x̂ ∈ int (C ).
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Condition for the existence of a minimizer

Theorem

Let H be Hilbert space.
Let f : H → ]−∞,+∞] be a differentiable convex function on dom f ,
which is an open set. Let C ⊂ dom f be a nonempty convex set. x̂ ∈ C is
a (global) minimizer of f on C if and only if

(∀y ∈ C ) 〈∇f (x̂) | y − x̂〉 ≥ 0.

If x̂ ∈ int (C ), then the condition reduces to

∇f (x̂) = 0.

Proof : Conversely, assume that the inequality holds. Let y ∈ C . Since f is
convex and Gâteaux differentiable,

f (y) ≥ f (x̂) + 〈∇f (x̂) | y − x̂〉 ≥ f (x̂).

Hence, x̂ is a minimizer of f on C .
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Exercice 3

Let f : H → R be differentiable.
Show that f is β-strongly convex if and only if

(∀(x , y) ∈ H2) f (y) ≥ f (x) + 〈∇f (x) | y − x〉+
β

2
‖y − x‖2.



44/50

Exercice 4

Let

f : R
N → R

(x(i))1≤i≤N 7→ ln

(
N∑

i=1

exp(x(i))

)
.

Show that f is convex. Is it strictly convex ?
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Projections
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Projection onto a closed convex set

Theorem

Let C be a nonempty closed convex set of a Hilbert space H.

(i) For every x ∈ H, there exists a unique point x̂ in C which lies at
minimum distance of x . The application PC : H → C which maps
every x ∈ H to its associated point x̂ is called the projection onto C .

(ii) For every x ∈ H, x̂ = PC (x) if and only if x̂ ∈ C and

(∀y ∈ C ) 〈x − x̂ | y − x̂〉 ≤ 0.
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Geometrical interpretation

Let C be a nonempty subset of H.
For every x ∈ H, the normal cone to C at x is defined as

NC (x) =

{{
u ∈ H

∣∣ (∀y ∈ C ) 〈u | y − x〉 ≤ 0
}

if x ∈ C

∅ otherwise.

C

NC (x)
x

u

C

NC (x)

x

u
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Geometrical interpretation

Let C be a nonempty subset of H.
For every x ∈ H, the normal cone to C at x is defined as

NC (x) =

{{
u ∈ H

∣∣ (∀y ∈ C ) 〈u | y − x〉 ≤ 0
}

if x ∈ C

∅ otherwise.

◮ If x ∈ intC , then NC (x) = {0}.

◮ If C is a vector space, then for every x ∈ C , NC (x) = C⊥.

◮ Let C be nonempty closed convex set of a Hilbert space H. For every
x ∈ H,

x̂ = PC (x) ⇔ x − x̂ ∈ NC (x̂).
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Examples of projections

◮ If C is a (closed) vector space of a Hilbert space H, then PC is the
(linear) orthogonal projection onto C . Then, for every x ∈ H,

x̂ = PC (x) ⇔

{
x̂ ∈ C

x − x̂ ∈ C⊥.
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Properties of the projection

◮ Let C be a nonempty closed convex set of a Hilbert space H. The
projection onto C is a firmly nonexpansive operator , i.e.

(∀(x , y) ∈ H2) ‖PC (x)− PC (y)‖
2 ≤ 〈x − y | PC (x)− PC (y)〉 .
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Properties of the projection

◮ Let C be a nonempty closed convex set of a Hilbert space H. The
projection onto C is a firmly nonexpansive operator , i.e.

(∀(x , y) ∈ H2) ‖PC (x)− PC (y)‖
2 ≤ 〈x − y | PC (x)− PC (y)〉 .

◮ The projection onto C is a nonexpansive operator , i.e.

(∀(x , y) ∈ H2) ‖PC (x)− PC (y)‖ ≤ ‖x − y‖.

◮ The projection onto C is uniformly continuous.
◮ The distance to C defined as

(∀x ∈ H) dC (x) = inf
y∈C

‖x − y‖ = ‖x − PC (x)‖

is continuous.
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Exercise 5

Let H and G be Hilbert spaces.
Let D be a nonempty closed convex set of G.
Let L ∈ B(H,G) be a bijective isometry and let

C =
{
x ∈ H

∣∣ Lx ∈ D
}
.

1. Show that the projection onto C is well-defined.

2. Show that PC = L∗ ◦ PD ◦ L.

3. Express PC when H = G = R
N and D = [0,+∞[N .


