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A few mathematical background




4/50

Hilbert spaces

A (real) pre-Hilbertian space 7{ is a real vector space endowed with a

function (- | -) : #2 — R, called inner product such that

O (Wx,y) € H2) (x| ¥) = (v | %)
2 (Yx,y,2) € M) (x+y | 2) = (x] 2) + (¥ ] 2)

(
® EV(X,y) € H?) (Va € R) (ax | y) = aly]|x)

\
=

y

@ (Vx € H) (x| x) >0and
(x| x) =0« x=0.

> The associated norm is

(Wxe#) Ixl=vix|x).
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Hilbert spaces

A (real) Hilbert space H is a complete pre-Hilbertian space.

» Particular case : H = RN (Euclidean space with dimension N).
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Hilbert spaces

A (real) Hilbert space H is a complete pre-Hilbertian space.

» Particular case : H = RN (Euclidean space with dimension N).

27 is the power set of 7, i.e. the family of all subsets of .
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Hilbert spaces

Let H and G be two Hilbert spaces.
A linear operator L: H{ — G is bounded if

IL[l = sup ||Lx]lg < +o0
Ixllze<1
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Hilbert spaces

Let H and G be two Hilbert spaces.

A linear operator L: H{ — G is bounded if
L
= sup Ao
xeH\{0} [BY]
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Hilbert spaces

Let H and G be two Hilbert spaces.

A linear operator L: H{ — G is bounded if
L
= sup Ao
xern{oy IIX]

> A linear operator from H to G is continuous if and only if it is
bounded.

> In finite dimension, every linear operator is bounded.

> In the following, it will be assumed that all the underlying Hilbert
spaces are finite dimensional.
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Hilbert spaces

Let H and G be two Hilbert spaces.

A linear operator L: H{ — G is bounded if
L
= sup Ao
xern{oy IIX]

> A linear operator from H to G is continuous if and only if it is
bounded.

> In finite dimension, every linear operator is bounded.

> In the following, it will be assumed that all the underlying Hilbert
spaces are finite dimensional.

B(H,G) : Banach space of (bounded) linear operators from H to G.
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Hilbert spaces

Let H and G be two Hilbert spaces.
Let L € B(H,G). Its adjoint L* is the operator in B(G,H) defined as

(Voy) e xG)  {y[Lx)g=(Ly[x)y-
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Hilbert spaces

Let H and G be two Hilbert spaces.
Let L € B(H,G). Its adjoint L* is the operator in B(G,H) defined as

(VOoy) eHxG)  (x|y)=(x|L).

Example :
If L:H—H" x—(x,...,x)

then L H" > H:y= y1,...,y,,)v—>Zy,

Proof :

(LX|y>=<(Xa---7X)|(ylv---,yn)>=_z x| yi) =< IZyl>
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Hilbert spaces

Let H and G be two Hilbert spaces.
Let L € B(H,G). Its adjoint L* is the operator in B(G,H) defined as

(VOoy) eHxG)  (x|y)=(x|L).

» We have |[L*|| = ||L].

» If L is bijective (i.e. an isomorphism ) then L=! ¢ B(G,H) and
(L—i)* ::(L*)_l.

» If H=RN and G = RM then L* = L.



8/50

Infinite values functions
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Functional analysis : definitions

Let S be a nonempty set of a Hilbert space H.
Let f: S =] — o0, +00] .

» The domain of fisdomf = {x € S|f(x) < +oo}.
» The function f is proper if domf # &.

Domains of the functions?

f(x)

)

x
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Functional analysis : definitions

Let S be a nonempty set of a Hilbert space H.
Let f: S —] — oo, +00] .

» The domain of fisdomf = {x € S|f(x) < +o0}.
» The function f is proper if domf # &.

Domains of the functions?

. ;

domf =R dom f =]0, J]
(proper) (proper)

X
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Functional analysis : definitions

Let C C H.
The indicator function of C is

0 if xe C
+o0o otherwise.

(Vx € H) te(x) = {

Example : C = [d1, 2]
F(x) = 151,620 (%)
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Limits inf and sup

Let (£n)nen be a sequence of elements in [—oo, +00].
Its infimum limit is liminf&, = lim,_ 4 inf {fk | k> n} € [—o0, +0o0]

and its supremum limit is limsup&, = lim,yoosup{& | k> n} €

[—00, +0].
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Limits inf and sup

Let (£n)nen be a sequence of elements in [—oo, +00].
Its infimum limit is liminf&, = lim,_ 4 inf {fk | k> n} € [—o0, +0o0]

and its supremum limit is limsup&, = lim,yoosup{& | k> n} €
[—OO,+OO].
> limsup§, = — liminf(=¢,)

> liminf ¢, <limsupé&,
> im0 §n = € € [—00, +00] if and only if liminf¢, = limsup &, = .
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Epigraph

Let f : H — ]|—o00,+0o0]. The epigraph of f is

epif = {(x,¢) edomf xR | f(x) < ¢}
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Epigraph

Let f : H — ]|—o00,+0o0]. The epigraph of f is

epif = {(x,¢) edomf xR | f(x) < ¢}

I F(x) = Ix| F(x) = t-s,5(x)
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Lower semi-continuity

Let f: H — ]—o0, +0o0].
f is a lower semi-continuous (l.s.c.) function at x € H if, for every se-
quence (x,)nen of H,

Xp = x = liminf f(x,) > f(x).
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Lower semi-continuity

Let f: H — ]—o0, +0o0].
f is a lower semi-continuous function on H if and only if epi f is closed

b |.s.c. functions?
) f(x)

I ‘ \}‘\\~___,///;; 1 e
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Xy
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Let f : H — |—o00, +00].
f is a lower semi-continuous function on H if and only if epi f is closed

b |.s.c. functions?
f(x) f(x)
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f is a lower semi-continuous function on H if and only if epi f is closed

b |.s.c. functions?

f(x) f(x)
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Lower semi-continuity
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f is a lower semi-continuous function on H if and only if epi f is closed
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Lower semi-continuity

> Every continuous function on H is l.s.c.
> Every finite sum of |.s.c. functions is |.s.c.

> Let (f;)ies be a family of |.s.c functions.
Then, sup;¢, fi is l.s.c.
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Does a minimum exist ?
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Minimizers

Let S be a nonempty set of a Hilbert space H.
Let f: S — ]—o00,+00] be a proper function and let X € S.

» X is a local minimizer of f if X € dom f and there exists an open
neigborhood O of X such that

(Vxe ons) f(x) < f(x).
» Xis a (global) minimizer of f if

(Vx€S)  f(R) < f(x).
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Minimizers

Let S be a nonempty set of a Hilbert space H.
Let f: S — ]—o00,+00] be a proper function and let X € S.

> X is a strict local minimizer of f if there exists an open neigborhood
O of X such that

(Vx e (ONS)\ {x}) f(x) < f(x).
> X is a strict (global and unique) minimizer of f if

(Vx e S\ {X))  f(X) < F(x).
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Existence of a minimizer

Weierstrass theorem

Let S be a nonempty compact set of a Hilbert space H.
Let f : S — |—o00,+00] be a proper l.s.c function.
Then, there exists X € S such that

f(x) = )l(g]; f(x).
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Existence of a minimizer

Let H be a Hilbert space. Let f: H — |—o0, +oa].
f is coercive if lim, 400 f(x) = +00.
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Existence of a minimizer

Let H be a Hilbert space. Let f: H — ]—o00, +00].
f is coercive if lim, 400 f(x) = +00.

Coercive functions ?
2 F(X) L F(X) Af(X)

|
N
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Existence of a minimizer

Let H be a Hilbert space. Let f: H — ]—o00, +00].
f is coercive if lim, 400 f(x) = +00.

Coercive functions ?
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Existence of a minimizer

Let H be a (finite dimensional) Hilbert space.

Let f : H — |—o00,+0o0] be a proper |.s.c. coercive function.
Then, the set of minimizers of f is a nonempty compact set.
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Existence of a minimizer

Let H be a (finite dimensional) Hilbert space.
Let f : H — ]—o00,+0o0] be a proper l.s.c. coercive function.
Then, the set of minimizers of f is a nonempty compact set.

Proof : Since f is proper, there exists xg € H such that f(xp) € R. The
coercivity of f implies that there exists 1 € ]0, 4+o00[ such that, for every
x € H satisfying ||x — xo|| > n, f(x) > f(xo).

Let S={xeH | |Ix—x| <n}, SNdomf # & and S is compact.
Then, there exists X € S such that f(X) = infyes f(x) < f(xp). Thus,
f(X) = infxey f(x).

Argminf C S is bounded. In addition, if (x,)nen is a sequence of
minimizers converging to X € H. Then, f(X) < liminf f(x,) = infxey f(x)
and, consequently, X € Argminf. Therefore, Argminf is closed.
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Exercise 1

Let f be the Shannon entropy function defined as

N
D xWDinxD i x = (xD); << € 10, +00["
i=1

f(x) =
+00 if (35 €{1,...,N}) x0) <o.

1. How can we extend the definition of function f so that it is |.s.c. on
RN ?

2. What can be said about the existence of a minimizer of this function

on a nonempty closed subset of the set '
C = {(xM)1cicn € [0, 400" | T, xD =1} 7
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Hints from differential calculus
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Necessary condition for the existence of a minimizer

(Euler’s inequality)

Let D be an open subset of a Hilbert space H and let C C D. Let f: D —
|—00, 4] be differentiable at X € C. If X is a local minimizer of f on C
then, for every y € H such that [x,y] C C,

(VI(X)|y—x)>0

If X € int (C), then the condition reduces to

VF(R) = 0.
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Necessary condition for the existence of a minimizer

(Euler’s inequality)

Let D be an open subset of a Hilbert space H and let C C D. Let f: D —
|—00, 4] be differentiable at X € C. If X is a local minimizer of f on C

then, for every y € H such that [x,y] C C,

(VEx) |y —x) = 0.

If X € int (C), then the condition reduces to

V£(R) = 0.

Remark : A zero of the gradient Vf is called a critical point of f.
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Necessary condition for the existence of a minimizer

Let C be an open subset of a Hilbert space H. Let f: C — R be diffe-
rentiable on C. Let f be twice differentiable at X € C. If If X is a local
minimizer of f on C, then

(1) Vf(x)=0;

(//) the Hessian V2f(X) of f at X is positive semi-definite, i.e.

(Vz e H) (z| V?*f(xX)z) > 0.




24/50

Sufficient conditions for the existence of a minimizer

Let C be an open subset of a Hilbert space H. Let f: C — R be differen-
tiable on C.

(/) If f is twice differentiable at X € C, Vf(x) = 0 and the Hessian
V2f(X) of f at X is positive definite, i.e.

(Vz € H\ {0}) (z | V?*f(x)z) > 0.

then f has a strict local minimum at X.
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Sufficient conditions for the existence of a minimizer

Let C be an open subset of a Hilbert space H. Let f: C — R be differen-
tiable on C.

(/) If f is twice differentiable at X € C, Vf(x) = 0 and the Hessian
V2f(X) of f at X is positive definite, i.e.

(Vz € H\ {0}) (z | V?f(x)z) > 0.

then f has a strict local minimum at Xx.
(/1) If f is twice differentiable on an open neighborhood D C C of X,
V£(x) = 0 and the Hessian of f is positive semi-definite on D, i.e.

(Vx € D)(Vz € H) (z| V*f(x)z) >0,

then f has a local minimum at X.
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Magic of convexity
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Convex set : definition

Let H be a Hilbert space. C C H is a convex set if

(V(x,y) € C*)(Va €]0,1]) ax+(l—a)ye C

Convex sets?

DO L
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Convex set : definition

Let H be a Hilbert space. C C H is a convex set if

(V(x,y) € C*)(Va €]0,1]) ax+(l—a)ye C

Convex sets?
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Convex set : properties

> & is considered as a convex set.
> If Cis a convex set, then (Vn € N*) (V(x1,...,x,) € C")

n
(V(au1, ..., an) €]0,+00[") with Zai =1,
i=1

n
:E:: aix; € C.
i=1

» Every vector (affine) space is convex.

» If C is a convex set, then int (C) and C are convex sets.
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Convex set : properties

b If C is a convex set then, for every a € R,
aC = {ax ‘ X € C}

is a convex set.

> If C; and G, are convex sets, then

C:l X (:2
G+6G= {Xl + X2 | (X1,X2) € (G x Cg}

are convex sets.

> If (Gi)iez is a family of convex sets of H, then ﬂ C; is convex.
iel
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Convex hull

Let H be a Hilbert space and C C H. The convex hull of C is the smallest
convex set including C. It is denoted by conv(C).

» conv(C) is the intersection of all the convex sets including C.
> Let x € H. x € conv(C) if and only if (3n € N*) (3(x1,...,x,) € C")

(F(a1,--.,an) € 10, 400" with Za; = 1 such that
i=1

n
X = E Qi Xj.
i=1
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Convex function : definitions

f:H — ]—o0,+00] is a convex function if

(V(x,y) € H?)(Va €]0,1])
flax+ (1 —a)y) < af(x) + (1 — a)f(y)
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Convex function : definitions

f:H — ]—o0,+00] is a convex function if

(V(x, y) € (dom f)2) (Ve €]0,1])
flax+ (1 —a)y) < af(x) + (1 —a)f(y)
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Convex function : definitions

f:H — ]—o00,+00] is a convex function if

(V(x,y) € (dom f)?)(Ver €]0, 1[)
flax+ (1 —a)y) < af(x) + (1 — a)f(y)

Convex functions ?

2 F(x) = |x]| f(x) = 1[—s,5)(x)
(0 si x € [-9,4]

~+00 sinon)

=% 3 x

Xy
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Convex function : definitions

f:H — ]—o00,+00] is a convex function if

(V(x,y) € (dom f)?)(Ver €]0, 1[)
flax+ (1 —a)y) < af(x) + (1 — a)f(y)

Convex functions ?

2 F(x) = |x]| f(x) = 1[—s,5)(x)
(0 si x € [-9,4]

~+00 sinon)

=% 3 x

Xy



29/50

Convex function : definitions

f:H— ]-o00,+0x] is a convex function if

(V(x,y) € (dom f)2) (Ve €]0,1])
flax + (1 — a)y) < af(x) + (1L — a)f(y)

» f:H — [—o0,+00[ is concave if —f is convex.
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Convex functions : definition

f:H — ]—00,+00] is convex < its epigraph is a convex set.
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Convex functions : definition

f:H — ]—00,+00] is convex < its epigraph is a convex set.

I F(x) = Ix| F(x) = /Ix] F(x) = 5.5 (x.
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Convex functions : definition

f:H — ]—00,+00] is convex < its epigraph is a convex set.

.

I F(x) = Ix| T F(x) = V/IxI F(x) = v-s.0)(

Xy
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Convex functions : properties

> If £ H — ]—00,+00] is convex, then dom f is convex and its
lower level set at height n € R

leve, f={xeH | f(x) <n}

is a convex set.

» f:H — ]—00,+00] is convex if and only if (¥(x,y) € (dom f)?)
Ox,y: [0,1] = ]—o00,+00] : @ f(ax + (1 — a)y) is convex.
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Convex functions : properties

> Every finite sum of convex functions is convex.
> Let (fi)ie; be a family of convex functions. Then, sup;c, f; is convex.

» To(H) : class of convex, |.s.c., and proper functions from H to
|—00, +o0].

> Let C C H.
tc € To(H) < C is a nonempty closed convex set.
Proof : epi,. = C x [0, +o0[.
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Strictly convex functions

Let H be a Hilbert space. Let f: H — ]—o00, +0o0].
f is strictly convex if

(Vx € dom f)(Vy € dom f)(Va €]0, 1)
x#y = flax+(1—-a)y)<af(x)+(1—-a)f(y).
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Strictly convex functions

Let H be a Hilbert space. Let f: H — ]—o00, +0o0].
f is strictly convex if

(Vx € dom f)(Vy € dom f)(Va €]0, 1)
x#y = flax+(1—-a)y)<af(x)+(1—-a)f(y).

Strictly convex functions ?

fd// \ \
: \ =

X
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Strictly convex functions

Let H be a Hilbert space. Let f: H — ]—o00, +0o0].
f is strictly convex if

(Vx € dom f)(Vy € dom f)(Va €]0, 1)
x#y = flax+(1—-a)y)<af(x)+(1—-a)f(y).

Strictly convex functions ?
f(x) f(x) 4 f(x)

~ e

A\
N

4
,
,
,
N ,
N 7
v
N
VAEEREN
v N
~
4 >
>
-
X

X
X
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Minimizers of a convex function

Let H be a Hilbert space. Let f: H — ]—o00,+0o0] be a proper convex
function such that p = inf f > —oo.

» {xe M| f(x)=p} is convex.

b Every local minimizer of f is a global minimizer.

b If f is strictly convex, then there exists at most one minimizer.
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Minimizers of a convex function

Let H be a Hilbert space. Let f: H — ]—o00,+0o0] be a proper convex
function such that p = inf f > —oo.

» {xe M| f(x)=p} is convex.

b Every local minimizer of f is a global minimizer.

b If f is strictly convex, then there exists at most one minimizer.

Proof : Let Q= {x € H | f(x) = p}. Let (x,y) € Q% and let « € [0, 1].
We have

flax + (1 —a)y) < af(x) + (1 - a)f(y) = p
which shows that ax + (1 — a)y € Q.
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Minimizers of a convex function

Let H be a Hilbert space. Let f: H — ]—o00,+0o0] be a proper convex
function such that p = inf f > —oo.

» {xe M| f(x)=p} is convex.

b Every local minimizer of f is a global minimizer.

b If f is strictly convex, then there exists at most one minimizer.

Proof : Let X be a local minimizer of f. For every y € H \ {x}, there
exists « €]0, 1] such that

(X+aly — X)) < (1 —a)f(x)+af(y)

If f is strictly convex, the inequality is strict.
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Existence and uniqueness of a minimizer

Let H be a Hilbert space and C a closed convex subset of H. Let £ € I'g(H)
such that dom f N C # @.
If f is coercive or C is bounded, then there exists X € C such that

f(x)= ;22 f(x).

If, moreover, f is strictly convex, this minimizer X is unique.
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Exercise 2

Let H be a Hilbert space.
1. Show that the function x + ||x]||? is strictly convex.

2. A function f: H — |—o0,+00] is strongly convex with modulus
B € 10, +o0] if there exists a convex function g: H — |—00, +o0]
such that

_ B
F=g+L]I2

Show that that every strongly convex function is strictly convex.

3. Show that a function f: H — ]|—00,400] is strongly convex with
modulus 8 € ]0,+o0] if and only if

(¥(x,y) € H?)(Va €]0,1])

flax+ (1 —a)y) +a(l - a)gllx —y[? < af (x) + (1 - a)f(y).
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Convex 4+ smooth
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Characterization of differentiable convex functions

Let f: H — ]—o0,+0o0] be differentiable on dom f, which is a nonempty
open convex set.
Then, f is convex if and only if

(V(x,y) € (dom £)?)  F(y) 2 F(x) + (VF(x) | y = x).
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Characterization of differentiable strictly convex functions

Let f: H — ]—o0,+o0] be differentiable on dom f, which is a nonempty

open convex set.
Then, f is strictly convex if and only if, for every (x,y) € (dom f)? with

X#y,

Fly) > FO) +(VF(x) [y —x).
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Characterization of differentiable convex functions

Let f: H — ]|—o00,+0o0] be differentiable on dom f, which is a nonempty
open convex set.
Then, f is convex if and only if Vf is monotone on dom f, i.e.

(V(x,y) € (domf)?) (VF(y) = VF(x)|y—x) 0.
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Characterization of strictly differentiable convex functions

Let f: H — ]—o00,+0o0] be differentiable on dom f, which is a nonempty

open convex set.
Then, f is strictly convex if and only if V£ is strictly monotone on dom f,

i.e. for every (x,y) € (dom f)? with x # y,
(Vf(y) = Vf(x) |y —x) > 0.
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Characterization of twice differentiable convex functions

Let H be a Hilbert space.
Let f: H — |—o0,+00] be a twice differentiable function on dom f, which
is a nonempty open convex set.

> f is convex if and only if, for every x € dom f, V?f(x) is positive
semi-definite.

> If, for every x € dom f, V2f(x) is positive definite, then f is strictly
convex.
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Condition for the existence of a minimizer

Let H be Hilbert space.
Let f: H — ]—o00,+0o0] be a differentiable convex function on dom f,

which is an open set. Let C C dom f be a nonempty convex set. X € C is
a (global) minimizer of f on C if and only if

(Vy € €) (VF(X) |y —Xx)>0.
If X € int (C), then the condition reduces to

VF(R) = 0.




42/50

Condition for the existence of a minimizer

Let H be Hilbert space.
Let f: H — ]—o0,+0o0] be a differentiable convex function on dom f,

which is an open set. Let C C dom f be a nonempty convex set. x € C is
a (global) minimizer of f on C if and only if

(vyeC) (Vi) |y—X) =0.

If X € int (C), then the condition reduces to
Vf(x) = 0.

Proof : We have already seen that the inequality is a necessary condition for
X to be a local minimizer of f on C and that it reduces to the vanishing

condition on the gradient if X € int (C).
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Condition for the existence of a minimizer

Let H be Hilbert space.
Let f: H — ]—o0,+00] be a differentiable convex function on dom f,

which is an open set. Let C C dom f be a nonempty convex set. X € C is
a (global) minimizer of f on C if and only if

(vye€) (VI(Xx)|ly-%) =0
If X € int (C), then the condition reduces to
Vf(x) = 0.

Proof : Conversely, assume that the inequality holds. Let y € C. Since f is
convex and Gateaux differentiable,

fly) = F(x) + (VF(X) [y = %) = f(%).

Hence, X is a minimizer of f on C.
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Exercice 3

Let f: H — R be differentiable.
Show that f is S-strongly convex if and only if

(W0 y) € H) F(y) 2 7+ (TF() [y =) + 2y — P
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Exercice 4

Let

f: RN SR

N
(X(i))lgig/\/ — In (Z exp(x(i))) .

i=1

Show that f is convex. Is it strictly convex?
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Projections
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Projection onto a closed convex set

Let C be a nonempty closed convex set of a Hilbert space .

(/) For every x € H, there exists a unique point X in C which lies at
minimum distance of x. The application Pc: H — C which maps
every x € H to its associated point X is called the projection onto C .

(/1) For every x € H, X = P¢(x) if and only if X € C and

(WyeC) (x—%|y—%) <o.
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Geometrical interpretation

Let C be a nonempty subset of #.
For every x € H, the normal cone to C at x is defined as

Ne(x) = {UGH ‘ (Vy € €) <U|}’—X>§O} if xe C
‘ e otherwise.
Ne(x)
Nc(x)
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Geometrical interpretation

Let C be a nonempty subset of #.
For every x € H, the normal cone to C at x is defined as

Ny = [lUEH (e Q) tuly—x) <0} ifxec
‘ e otherwise.

> If x € int C, then N¢(x) = {0}.
» If C is a vector space, then for every x € C, N¢(x) = C*+.
> Let C be nonempty closed convex set of a Hilbert space . For every

xeH,
X=Pc(x) & x—Xx¢€Nc(x).
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Examples of projections

> If Cis a (closed) vector space of a Hilbert space H, then Pc is the
(linear) orthogonal projection onto C. Then, for every x € H,

xeC
X=P &
X c(x) {x—?e ct.



49/50

Properties of the projection

> Let C be a nonempty closed convex set of a Hilbert space H. The
projection onto C is a firmly nonexpansive operator , i.e.

(V0x,y) € H?)  IPc(x) = Pc)II* < (x =y | Pc(x) = Pc(y)) -
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Properties of the projection

> Let C be a nonempty closed convex set of a Hilbert space H. The
projection onto C is a firmly nonexpansive operator , i.e.

(V(x,y) €H?)  |Pc(x) = Pc)I? < (x =y | Pc(x) = Pc(y)) -
P The projection onto C is a nonexpansive operator , i.e.
(V(x,y) € H?)  |Pc(x) = Pc)Il < lIx = -

> The projection onto C is uniformly continuous.
> The distance to C defined as

(Vxe M)  dc(x)=inf [|x = y[| =[x = Pc(x)]]
yeC

is continuous.
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Exercise 5

Let H and G be Hilbert spaces.
Let D be a nonempty closed convex set of G.
Let L € B(H,G) be a bijective isometry and let

C={xeM|LxeD}

1. Show that the projection onto C is well-defined.
2. Show that Pc = L*o Ppo L.

3. Express Pc when H =G = RN and D = [0, +-o0[V.



