Master MVA
 Optimization Reminders Part I

Jean-Christophe Pesquet

Center for Visual Computing
Inria, CentraleSupélec
Institut Universitaire de France
jean-christophe@pesquet.eu

Reference books

D. Bertsekas, Nonlinear programming, Athena Scientic, Belmont, Massachussets, 1996.

- Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Springer, 2004.
- S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, 2004.
- H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, 2017.

A few mathematical background

Hilbert spaces

A (real) pre-Hilbertian space \mathcal{H} is a real vector space endowed with a function $\langle\cdot \mid \cdot\rangle: \mathcal{H}^{2} \rightarrow \mathbb{R}$, called inner product such that
(1) $\left(\forall(x, y) \in \mathcal{H}^{2}\right)\langle x \mid y\rangle=\langle y \mid x\rangle$
(2) $\left(\forall(x, y, z) \in \mathcal{H}^{3}\right)\langle x+y \mid z\rangle=\langle x \mid z\rangle+\langle y \mid z\rangle$
(3) $\left(\forall(x, y) \in \mathcal{H}^{2}\right)(\forall \alpha \in \mathbb{R})\langle\alpha x \mid y\rangle=\alpha\langle y \mid x\rangle$
(4) $(\forall x \in \mathcal{H})\langle x \mid x\rangle \geq 0$ and
$\langle x \mid x\rangle=0 \Leftrightarrow x=0$.

- The associated norm is

$$
(\forall x \in \mathcal{H}) \quad\|x\|=\sqrt{\langle x \mid x\rangle} .
$$

Hilbert spaces

A (real) Hilbert space \mathcal{H} is a complete pre-Hilbertian space.

- Particular case : $\mathcal{H}=\mathbb{R}^{N}($ Euclidean space with dimension $N)$.

Hilbert spaces

A (real) Hilbert space \mathcal{H} is a complete pre-Hilbertian space.
Particular case : $\mathcal{H}=\mathbb{R}^{N}$ (Euclidean space with dimension N).
$2^{\mathcal{H}}$ is the power set of \mathcal{H}, i.e. the family of all subsets of \mathcal{H}.

Hilbert spaces

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.
A linear operator $L: \mathcal{H} \rightarrow \mathcal{G}$ is bounded if

$$
\|L\|=\sup _{\|x\|_{\mathcal{H}} \leq 1}\|L x\|_{\mathcal{G}}<+\infty
$$

Hilbert spaces

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.
A linear operator $L: \mathcal{H} \rightarrow \mathcal{G}$ is bounded if

$$
\|L\|=\sup _{\|x\| \leq 1}\|L x\|<+\infty
$$

Hilbert spaces

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.
A linear operator $L: \mathcal{H} \rightarrow \mathcal{G}$ is bounded if

$$
\|L\|=\sup _{\|x\|=1}\|L x\|<+\infty
$$

Hilbert spaces

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.
A linear operator $L: \mathcal{H} \rightarrow \mathcal{G}$ is bounded if

$$
\|L\|=\sup _{x \in \mathcal{H} \backslash\{0\}} \frac{\|L x\|}{\|x\|}<+\infty
$$

Hilbert spaces

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.
A linear operator $L: \mathcal{H} \rightarrow \mathcal{G}$ is bounded if

$$
\|L\|=\sup _{x \in \mathcal{H} \backslash\{0\}} \frac{\|L x\|}{\|x\|}<+\infty
$$

- A linear operator from \mathcal{H} to \mathcal{G} is continuous if and only if it is bounded.
- In finite dimension, every linear operator is bounded.
- In the following, it will be assumed that all the underlying Hilbert spaces are finite dimensional.

Hilbert spaces

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.
A linear operator $L: \mathcal{H} \rightarrow \mathcal{G}$ is bounded if

$$
\|L\|=\sup _{x \in \mathcal{H} \backslash\{0\}} \frac{\|L x\|}{\|x\|}<+\infty
$$

- A linear operator from \mathcal{H} to \mathcal{G} is continuous if and only if it is bounded.
- In finite dimension, every linear operator is bounded.
- In the following, it will be assumed that all the underlying Hilbert spaces are finite dimensional.
$\mathcal{B}(\mathcal{H}, \mathcal{G})$: Banach space of (bounded) linear operators from \mathcal{H} to \mathcal{G}.

Hilbert spaces

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.
Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Its adjoint L^{*} is the operator in $\mathcal{B}(\mathcal{G}, \mathcal{H})$ defined as

$$
(\forall(x, y) \in \mathcal{H} \times \mathcal{G}) \quad\langle y \mid L x\rangle_{\mathcal{G}}=\left\langle L^{*} y \mid x\right\rangle_{\mathcal{H}}
$$

Hilbert spaces

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.
Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Its adjoint L^{*} is the operator in $\mathcal{B}(\mathcal{G}, \mathcal{H})$ defined as

$$
(\forall(x, y) \in \mathcal{H} \times \mathcal{G}) \quad\langle y \mid L x\rangle=\left\langle L^{*} y \mid x\right\rangle
$$

Hilbert spaces

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.
Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Its adjoint L^{*} is the operator in $\mathcal{B}(\mathcal{G}, \mathcal{H})$ defined as

$$
(\forall(x, y) \in \mathcal{H} \times \mathcal{G}) \quad\langle L x \mid y\rangle=\left\langle x \mid L^{*} y\right\rangle
$$

Hilbert spaces

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.
Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Its adjoint L^{*} is the operator in $\mathcal{B}(\mathcal{G}, \mathcal{H})$ defined as

$$
(\forall(x, y) \in \mathcal{H} \times \mathcal{G}) \quad\langle L x \mid y\rangle=\left\langle x \mid L^{*} y\right\rangle
$$

Example :
If

$$
L: \mathcal{H} \rightarrow \mathcal{H}^{n}: x \mapsto(x, \ldots, x)
$$

then

$$
L^{*}: \mathcal{H}^{n} \rightarrow \mathcal{H}: y=\left(y_{1}, \ldots, y_{n}\right) \mapsto \sum_{i=1}^{n} y_{i}
$$

Proof:

$$
\langle L x \mid y\rangle=\left\langle(x, \ldots, x) \mid\left(y_{1}, \ldots, y_{n}\right)\right\rangle=\sum_{i=1}^{n}\left\langle x \mid y_{i}\right\rangle=\left\langle x \mid \sum_{i=1}^{n} y_{i}\right\rangle
$$

Hilbert spaces

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.
Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Its adjoint L^{*} is the operator in $\mathcal{B}(\mathcal{G}, \mathcal{H})$ defined as

$$
(\forall(x, y) \in \mathcal{H} \times \mathcal{G}) \quad\langle L x \mid y\rangle=\left\langle x \mid L^{*} y\right\rangle
$$

- We have $\left\|L^{*}\right\|=\|L\|$.
- If L is bijective (i.e. an isomorphism) then $L^{-1} \in \mathcal{B}(\mathcal{G}, \mathcal{H})$ and $\left(L^{-1}\right)^{*}=\left(L^{*}\right)^{-1}$.

If $\mathcal{H}=\mathbb{R}^{N}$ and $\mathcal{G}=\mathbb{R}^{M}$ then $L^{*}=L^{\top}$.

Infinite values functions

Functional analysis : definitions

Let S be a nonempty set of a Hilbert space \mathcal{H}.
Let $f: S \rightarrow]-\infty,+\infty]$.

- The domain of f is $\operatorname{dom} f=\{x \in S \mid f(x)<+\infty\}$.
\Rightarrow The function f is proper if $\operatorname{dom} f \neq \varnothing$.

Domains of the functions?

Functional analysis : definitions

Let S be a nonempty set of a Hilbert space \mathcal{H}.
Let $f: S \rightarrow]-\infty,+\infty]$.

- The domain of f is $\operatorname{dom} f=\{x \in S \mid f(x)<+\infty\}$.
\Rightarrow The function f is proper if $\operatorname{dom} f \neq \varnothing$.

Domains of the functions?

$\operatorname{dom} f=\mathbb{R}$
(proper)

Functional analysis : definitions

Let S be a nonempty set of a Hilbert space \mathcal{H}.
Let $f: S \rightarrow]-\infty,+\infty]$.

- The domain of f is $\operatorname{dom} f=\{x \in S \mid f(x)<+\infty\}$. The function f is proper if $\operatorname{dom} f \neq \varnothing$.

Domains of the functions?

$\operatorname{dom} f=\mathbb{R}$
(proper)

$\operatorname{dom} f=] 0, \delta]$
(proper)

Functional analysis : definitions

Let $C \subset \mathcal{H}$.
The indicator function of C is

$$
(\forall x \in \mathcal{H}) \quad \iota^{\iota}(x)= \begin{cases}0 & \text { if } x \in C \\ +\infty & \text { otherwise } .\end{cases}
$$

$\underline{\text { Example }}: C=\left[\delta_{1}, \delta_{2}\right]$

Limits inf and sup

Let $\left(\xi_{n}\right)_{n \in \mathbb{N}}$ be a sequence of elements in $[-\infty,+\infty]$.
Its infimum limit is $\liminf \xi_{n}=\lim _{n \rightarrow+\infty} \inf \left\{\xi_{k} \mid k \geq n\right\} \in[-\infty,+\infty]$ and its supremum limit is $\lim \sup \xi_{n}=\lim _{n \rightarrow+\infty} \sup \left\{\xi_{k} \mid k \geq n\right\} \in$ $[-\infty,+\infty]$.

Limits inf and sup

Let $\left(\xi_{n}\right)_{n \in \mathbb{N}}$ be a sequence of elements in $[-\infty,+\infty]$.
Its infimum limit is $\lim \inf \xi_{n}=\lim _{n \rightarrow+\infty} \inf \left\{\xi_{k} \mid k \geq n\right\} \in[-\infty,+\infty]$ and its supremum limit is $\lim \sup \xi_{n}=\lim _{n \rightarrow+\infty} \sup \left\{\xi_{k} \mid k \geq n\right\} \in$ $[-\infty,+\infty]$.
$\Rightarrow \limsup \xi_{n}=-\liminf \left(-\xi_{n}\right)$
$\Rightarrow \liminf \xi_{n} \leq \limsup \xi_{n}$
$>\lim _{n \rightarrow+\infty} \xi_{n}=\bar{\xi} \in[-\infty,+\infty]$ if and only if $\lim \inf \xi_{n}=\limsup \xi_{n}=\bar{\xi}$.

Epigraph

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$. The epigraph of f is

$$
\text { epi } f=\{(x, \zeta) \in \operatorname{dom} f \times \mathbb{R} \mid f(x) \leq \zeta\}
$$

Epigraph

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$. The epigraph of f is

$$
\text { epi } f=\{(x, \zeta) \in \operatorname{dom} f \times \mathbb{R} \mid f(x) \leq \zeta\}
$$

Lower semi-continuity

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$.
f is a lower semi-continuous (I.s.c.) function at $x \in \mathcal{H}$ if, for every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of \mathcal{H},

$$
x_{n} \rightarrow x \quad \Rightarrow \quad \liminf f\left(x_{n}\right) \geq f(x)
$$

Lower semi-continuity

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$.
f is a lower semi-continuous function on \mathcal{H} if and only if epi f is closed

- . .s.c. functions?

Lower semi-continuity

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$.
f is a lower semi-continuous function on \mathcal{H} if and only if epi f is closed

- . .s.c. functions?

Lower semi-continuity

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$.
f is a lower semi-continuous function on \mathcal{H} if and only if epi f is closed

- ..s.c. functions?

Lower semi-continuity

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$.
f is a lower semi-continuous function on \mathcal{H} if and only if epi f is closed
\Rightarrow l.s.c. functions?

Lower semi-continuity

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$.
f is a lower semi-continuous function on \mathcal{H} if and only if epi f is closed
\Rightarrow l.s.c. functions?

Lower semi-continuity

- Every continuous function on \mathcal{H} is l.s.c.
- Every finite sum of I.s.c. functions is I.s.c.
\Rightarrow Let $\left(f_{i}\right)_{i \in I}$ be a family of I.s.c functions. Then, $\sup _{i \in I} f_{i}$ is I.s.c.

Does a minimum exist?

Minimizers

Let S be a nonempty set of a Hilbert space \mathcal{H}.
Let $f: S \rightarrow]-\infty,+\infty]$ be a proper function and let $\widehat{x} \in S$.

- \hat{x} is a local minimizer of f if $\hat{x} \in \operatorname{dom} f$ and there exists an open neigborhood O of \hat{x} such that

$$
(\forall x \in O \cap S) \quad f(\widehat{x}) \leq f(x)
$$

$\Rightarrow \hat{x}$ is a (global) minimizer of f if

$$
(\forall x \in S) \quad f(\widehat{x}) \leq f(x)
$$

Minimizers

Let S be a nonempty set of a Hilbert space \mathcal{H}.
Let $f: S \rightarrow]-\infty,+\infty]$ be a proper function and let $\widehat{x} \in S$.

- \hat{x} is a strict local minimizer of f if there exists an open neigborhood O of \hat{x} such that

$$
(\forall x \in(O \cap S) \backslash\{\widehat{x}\}) \quad f(\widehat{x})<f(x)
$$

- \widehat{x} is a strict (global and unique) minimizer of f if

$$
(\forall x \in S \backslash\{\widehat{x}\}) \quad f(\widehat{x})<f(x)
$$

Existence of a minimizer

Weierstrass theorem

Let S be a nonempty compact set of a Hilbert space \mathcal{H}.
Let $f: S \rightarrow]-\infty,+\infty$] be a proper l.s.c function.
Then, there exists $\hat{x} \in S$ such that

$$
f(\widehat{x})=\inf _{x \in S} f(x)
$$

Existence of a minimizer

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$.
f is coercive if $\lim _{\|x\| \rightarrow+\infty} f(x)=+\infty$.

Existence of a minimizer

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$.
f is coercive if $\lim _{\|x\| \rightarrow+\infty} f(x)=+\infty$.

Coercive functions?

Existence of a minimizer

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$.
f is coercive if $\lim _{\|x\| \rightarrow+\infty} f(x)=+\infty$.

Coercive functions?

Existence of a minimizer

Theorem

Let \mathcal{H} be a (finite dimensional) Hilbert space.
Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be a proper I.s.c. coercive function.
Then, the set of minimizers of f is a nonempty compact set.

Existence of a minimizer

Theorem

Let \mathcal{H} be a (finite dimensional) Hilbert space.
Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be a proper I.s.c. coercive function.
Then, the set of minimizers of f is a nonempty compact set.
Proof: Since f is proper, there exists $x_{0} \in \mathcal{H}$ such that $f\left(x_{0}\right) \in \mathbb{R}$. The coercivity of f implies that there exists $\eta \in] 0,+\infty[$ such that, for every $x \in \mathcal{H}$ satisfying $\left\|x-x_{0}\right\|>\eta, f(x)>f\left(x_{0}\right)$.
Let $S=\left\{x \in \mathcal{H} \mid\left\|x-x_{0}\right\| \leq \eta\right\}, S \cap \operatorname{dom} f \neq \varnothing$ and S is compact. Then, there exists $\widehat{x} \in S$ such that $f(\widehat{x})=\inf _{x \in S} f(x) \leq f\left(x_{0}\right)$. Thus, $f(\widehat{x})=\inf _{x \in \mathcal{H}} f(x)$.
Argmin $f \subset S$ is bounded. In addition, if $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a sequence of minimizers converging to $\widehat{x} \in \mathcal{H}$. Then, $f(\widehat{x}) \leq \lim \inf f\left(x_{n}\right)=\inf _{x \in \mathcal{H}} f(x)$ and, consequently, $\widehat{x} \in \operatorname{Argmin} f$. Therefore, $\operatorname{Argmin} f$ is closed.

Exercise 1

Let f be the Shannon entropy function defined as

$$
f(x)= \begin{cases}\sum_{i=1}^{N} x^{(i)} \ln x^{(i)} & \text { if } \left.x=\left(x^{(i)}\right) 1 \leq i \leq N \in\right] 0,+\infty\left[{ }^{N}\right. \\ +\infty & \text { if }(\exists j \in\{1, \ldots, N\}) x^{(j)}<0 .\end{cases}
$$

1. How can we extend the definition of function f so that it is I.s.c. on \mathbb{R}^{N} ?
2. What can be said about the existence of a minimizer of this function on a nonempty closed subset of the set
$C=\left\{\left(x^{(i)}\right)_{1 \leq i \leq N} \in\left[0,+\infty\left[^{N} \mid \sum_{i=1}^{N} x^{(i)}=1\right\} ?\right.\right.$

Hints from differential calculus

Necessary condition for the existence of a minimizer (Euler's inequality)

Theorem

Let D be an open subset of a Hilbert space \mathcal{H} and let $C \subset D$. Let $f: D \rightarrow$ $]-\infty,+\infty]$ be differentiable at $\hat{x} \in C$. If \widehat{x} is a local minimizer of f on C then, for every $y \in \mathcal{H}$ such that $[\hat{x}, y] \subset C$,

$$
\langle\nabla f(\widehat{x}) \mid y-\widehat{x}\rangle \geq 0
$$

If $\hat{x} \in \operatorname{int}(C)$, then the condition reduces to

$$
\nabla f(\widehat{x})=0
$$

Necessary condition for the existence of a minimizer (Euler's inequality)

Theorem

Let D be an open subset of a Hilbert space \mathcal{H} and let $C \subset D$. Let $f: D \rightarrow$ $]-\infty,+\infty]$ be differentiable at $\hat{x} \in C$. If \widehat{x} is a local minimizer of f on C then, for every $y \in \mathcal{H}$ such that $[\hat{x}, y] \subset C$,

$$
\langle\nabla f(\widehat{x}) \mid y-\widehat{x}\rangle \geq 0
$$

If $\hat{x} \in \operatorname{int}(C)$, then the condition reduces to

$$
\nabla f(\widehat{x})=0
$$

Remark : A zero of the gradient ∇f is called a critical point of f.

Necessary condition for the existence of a minimizer

Theorem

Let C be an open subset of a Hilbert space \mathcal{H}. Let $f: C \rightarrow \mathbb{R}$ be differentiable on C. Let f be twice differentiable at $\hat{x} \in C$. If If \widehat{x} is a local minimizer of f on C, then
(i) $\nabla f(\widehat{x})=0$;
(ii) the Hessian $\nabla^{2} f(\widehat{x})$ of f at \widehat{x} is positive semi-definite, i.e.

$$
(\forall z \in \mathcal{H}) \quad\left\langle z \mid \nabla^{2} f(\widehat{x}) z\right\rangle \geq 0
$$

Sufficient conditions for the existence of a minimizer

Theorem

Let C be an open subset of a Hilbert space \mathcal{H}. Let $f: C \rightarrow \mathbb{R}$ be differentiable on C.
(i) If f is twice differentiable at $\widehat{x} \in C, \nabla f(\widehat{x})=0$ and the Hessian $\nabla^{2} f(\widehat{x})$ of f at \widehat{x} is positive definite, i.e.

$$
(\forall z \in \mathcal{H} \backslash\{0\}) \quad\left\langle z \mid \nabla^{2} f(\widehat{x}) z\right\rangle>0 .
$$

then f has a strict local minimum at \widehat{x}.

Sufficient conditions for the existence of a minimizer

Theorem

Let C be an open subset of a Hilbert space \mathcal{H}. Let $f: C \rightarrow \mathbb{R}$ be differentiable on C.
(i) If f is twice differentiable at $\widehat{x} \in C, \nabla f(\widehat{x})=0$ and the Hessian $\nabla^{2} f(\widehat{x})$ of f at \widehat{x} is positive definite, i.e.

$$
(\forall z \in \mathcal{H} \backslash\{0\}) \quad\left\langle z \mid \nabla^{2} f(\widehat{x}) z\right\rangle>0 .
$$

then f has a strict local minimum at \widehat{x}.
(ii) If f is twice differentiable on an open neighborhood $D \subset C$ of \widehat{x}, $\nabla f(\widehat{x})=0$ and the Hessian of f is positive semi-definite on D, i.e.

$$
(\forall x \in D)(\forall z \in \mathcal{H}) \quad\left\langle z \mid \nabla^{2} f(x) z\right\rangle \geq 0
$$

then f has a local minimum at \hat{x}.

Magic of convexity

Convex set: definition

Let \mathcal{H} be a Hilbert space. $\subset \subset \mathcal{H}$ is a convex set if

$$
\left(\forall(x, y) \in C^{2}\right)(\forall \alpha \in] 0,1[) \quad \alpha x+(1-\alpha) y \in C
$$

Convex sets?

Convex set: definition

Let \mathcal{H} be a Hilbert space. $C \subset \mathcal{H}$ is a convex set if

$$
\left(\forall(x, y) \in C^{2}\right)(\forall \alpha \in] 0,1[) \quad \alpha x+(1-\alpha) y \in C
$$

Convex sets?

Convex set : properties

\varnothing is considered as a convex set.

- If C is a convex set, then $\left(\forall n \in \mathbb{N}^{*}\right)\left(\forall\left(x_{1}, \ldots, x_{n}\right) \in C^{n}\right)$ $\left(\forall\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left[0,+\infty\left[^{n}\right)\right.\right.$ with $\sum_{i=1}^{n} \alpha_{i}=1$,

$$
\sum_{i=1}^{n} \alpha_{i} x_{i} \in C
$$

\Rightarrow Every vector (affine) space is convex.

- If C is a convex set, then $\operatorname{int}(C)$ and \bar{C} are convex sets.

Convex set : properties

If C is a convex set then, for every $\alpha \in \mathbb{R}$,

$$
\alpha C=\{\alpha x \mid x \in C\}
$$

is a convex set.

- If C_{1} and C_{2} are convex sets, then

$$
\begin{aligned}
& C_{1} \times C_{2} \\
& C_{1}+C_{2}=\left\{x_{1}+x_{2} \mid\left(x_{1}, x_{2}\right) \in C_{1} \times C_{2}\right\}
\end{aligned}
$$

are convex sets.

- If $\left(C_{i}\right)_{i \in \mathcal{I}}$ is a family of convex sets of \mathcal{H}, then $\bigcap_{i \in I} C_{i}$ is convex.

Convex hull

Let \mathcal{H} be a Hilbert space and $C \subset \mathcal{H}$. The convex hull of C is the smallest convex set including C. It is denoted by conv (C).
$\operatorname{conv}(C)$ is the intersection of all the convex sets including C.
$>$ Let $x \in \mathcal{H} . x \in \operatorname{conv}(C)$ if and only if $\left(\exists n \in \mathbb{N}^{*}\right)\left(\exists\left(x_{1}, \ldots, x_{n}\right) \in C^{n}\right)$
$\left(\exists\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\right] 0,+\infty\left[^{n}\right.$ with $\sum_{i=1}^{n} \alpha_{i}=1$ such that

$$
x=\sum_{i=1}^{n} \alpha_{i} x_{i}
$$

Convex function : definitions

$$
\begin{aligned}
& f: \mathcal{H} \rightarrow]-\infty,+\infty] \text { is a convex function if } \\
& \qquad \begin{array}{l}
\left(\forall(x, y) \in \mathcal{H}^{2}\right)(\forall \alpha \in] 0,1[) \\
\\
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
\end{array}
\end{aligned}
$$

Convex function : definitions

$$
\begin{aligned}
& f: \mathcal{H} \rightarrow]-\infty,+\infty] \text { is a convex function if } \\
& \qquad \begin{aligned}
&\left(\forall(x, y) \in(\operatorname{dom} f)^{2}\right)(\forall \alpha \in] 0,1[) \\
& f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
\end{aligned}
\end{aligned}
$$

Convex function : definitions

$f: \mathcal{H} \rightarrow]-\infty,+\infty]$ is a convex function if

$$
\begin{aligned}
\left(\forall(x, y) \in(\operatorname{dom} f)^{2}\right) & (\forall \alpha \in] 0,1[) \\
& f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
\end{aligned}
$$

Convex functions?

Convex function : definitions

$f: \mathcal{H} \rightarrow]-\infty,+\infty]$ is a convex function if

$$
\begin{aligned}
\left(\forall(x, y) \in(\operatorname{dom} f)^{2}\right) & (\forall \alpha \in] 0,1[) \\
& f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
\end{aligned}
$$

Convex functions?

Convex function : definitions

$$
\begin{aligned}
& f: \mathcal{H} \rightarrow]-\infty,+\infty] \text { is a convex function if } \\
& \qquad \begin{aligned}
&\left(\forall(x, y) \in(\operatorname{dom} f)^{2}\right)(\forall \alpha \in] 0,1[) \\
& f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
\end{aligned}
\end{aligned}
$$

- $f: \mathcal{H} \rightarrow[-\infty,+\infty[$ is concave if $-f$ is convex.

Convex functions : definition

$f: \mathcal{H} \rightarrow]-\infty,+\infty]$ is convex \Leftrightarrow its epigraph is a convex set.

Convex functions : definition

$f: \mathcal{H} \rightarrow]-\infty,+\infty]$ is convex \Leftrightarrow its epigraph is a convex set.

Convex functions : definition

$f: \mathcal{H} \rightarrow]-\infty,+\infty]$ is convex \Leftrightarrow its epigraph is a convex set.

Convex functions : properties

- If $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ is convex, then $\operatorname{dom} f$ is convex and its lower level set at height $\eta \in \mathbb{R}$

$$
\operatorname{lev}_{\leq \eta} f=\{x \in \mathcal{H} \mid f(x) \leq \eta\}
$$

is a convex set.

- $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ is convex if and only if $\left(\forall(x, y) \in(\operatorname{dom} f)^{2}\right)$ $\left.\left.\varphi_{x, y}:[0,1] \rightarrow\right]-\infty,+\infty\right]: \alpha \mapsto f(\alpha x+(1-\alpha) y)$ is convex.

Convex functions : properties

- Every finite sum of convex functions is convex.
\Rightarrow Let $\left(f_{i}\right)_{i \in I}$ be a family of convex functions. Then, $\sup _{i \in I} f_{i}$ is convex.
- $\Gamma_{0}(\mathcal{H})$: class of convex, I.s.c., and proper functions from \mathcal{H} to] $-\infty,+\infty$].
- Let $C \subset \mathcal{H}$.
${ }^{\iota} C \in \Gamma_{0}(\mathcal{H}) \Leftrightarrow C$ is a nonempty closed convex set.
Proof : epi ${ }_{\iota C}=C \times[0,+\infty[$.

Strictly convex functions

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$.
f is strictly convex if

$$
\begin{aligned}
& (\forall x \in \operatorname{dom} f)(\forall y \in \operatorname{dom} f)(\forall \alpha \in] 0,1[) \\
& \quad x \neq y \quad \Rightarrow \quad f(\alpha x+(1-\alpha) y)<\alpha f(x)+(1-\alpha) f(y)
\end{aligned}
$$

Strictly convex functions

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$.
f is strictly convex if

$$
\begin{aligned}
& (\forall x \in \operatorname{dom} f)(\forall y \in \operatorname{dom} f)(\forall \alpha \in] 0,1[) \\
& \quad x \neq y \quad \Rightarrow \quad f(\alpha x+(1-\alpha) y)<\alpha f(x)+(1-\alpha) f(y)
\end{aligned}
$$

Strictly convex functions?

Strictly convex functions

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$.
f is strictly convex if

$$
\begin{aligned}
& (\forall x \in \operatorname{dom} f)(\forall y \in \operatorname{dom} f)(\forall \alpha \in] 0,1[) \\
& \quad x \neq y \quad \Rightarrow \quad f(\alpha x+(1-\alpha) y)<\alpha f(x)+(1-\alpha) f(y)
\end{aligned}
$$

Strictly convex functions?

Minimizers of a convex function

Theorem

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \rightarrow]-\infty,+\infty$] be a proper convex function such that $\mu=\inf f>-\infty$.
$\{x \in \mathcal{H} \mid f(x)=\mu\}$ is convex.
\Rightarrow Every local minimizer of f is a global minimizer.
\Rightarrow If f is strictly convex, then there exists at most one minimizer.

Minimizers of a convex function

Theorem

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \rightarrow]-\infty,+\infty$] be a proper convex function such that $\mu=\inf f>-\infty$.
$\{x \in \mathcal{H} \mid f(x)=\mu\}$ is convex.

- Every local minimizer of f is a global minimizer.
- If f is strictly convex, then there exists at most one minimizer.

Proof : Let $\Omega=\{x \in \mathcal{H} \mid f(x)=\mu\}$. Let $(x, y) \in \Omega^{2}$ and let $\alpha \in[0,1]$. We have

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)=\mu
$$

which shows that $\alpha x+(1-\alpha) y \in \Omega$.

Minimizers of a convex function

Theorem

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \rightarrow]-\infty,+\infty$] be a proper convex function such that $\mu=\inf f>-\infty$.
$\{x \in \mathcal{H} \mid f(x)=\mu\}$ is convex.
\triangleright Every local minimizer of f is a global minimizer.

- If f is strictly convex, then there exists at most one minimizer.

Proof : Let \widehat{x} be a local minimizer of f. For every $y \in \mathcal{H} \backslash\{\widehat{x}\}$, there exists $\alpha \in] 0,1[$ such that

$$
\begin{aligned}
& f(\widehat{x}) \\
\Rightarrow \quad & \leq f(\widehat{x}) \leq f(y)
\end{aligned}
$$

If f is strictly convex, the inequality is strict.

Existence and uniqueness of a minimizer

Theorem

Let \mathcal{H} be a Hilbert space and C a closed convex subset of \mathcal{H}. Let $f \in \Gamma_{0}(\mathcal{H})$ such that $\operatorname{dom} f \cap C \neq \varnothing$.
If f is coercive or C is bounded, then there exists $\widehat{x} \in C$ such that

$$
f(\widehat{x})=\inf _{x \in C} f(x)
$$

If, moreover, f is strictly convex, this minimizer \widehat{x} is unique.

Exercise 2

Let \mathcal{H} be a Hilbert space.

1. Show that the function $x \mapsto\|x\|^{2}$ is strictly convex.
2. A function $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ is strongly convex with modulus $\beta \in] 0,+\infty[$ if there exists a convex function $g: \mathcal{H} \rightarrow]-\infty,+\infty]$ such that

$$
f=g+\frac{\beta}{2}\|\cdot\|^{2} .
$$

Show that that every strongly convex function is strictly convex.
3. Show that a function $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ is strongly convex with modulus $\beta \in] 0,+\infty[$ if and only if

$$
\begin{aligned}
& \left(\forall(x, y) \in \mathcal{H}^{2}\right)(\forall \alpha \in] 0,1[) \\
& f(\alpha x+(1-\alpha) y)+\alpha(1-\alpha) \frac{\beta}{2}\|x-y\|^{2} \leq \alpha f(x)+(1-\alpha) f(y)
\end{aligned}
$$

Convex + smooth

Characterization of differentiable convex functions

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be differentiable on $\operatorname{dom} f$, which is a nonempty open convex set.
Then, f is convex if and only if

$$
\left(\forall(x, y) \in(\operatorname{dom} f)^{2}\right) \quad f(y) \geq f(x)+\langle\nabla f(x) \mid y-x\rangle .
$$

Characterization of differentiable strictly convex functions

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty$] be differentiable on $\operatorname{dom} f$, which is a nonempty open convex set.
Then, f is strictly convex if and only if, for every $(x, y) \in(\operatorname{dom} f)^{2}$ with $x \neq y$,

$$
f(y)>f(x)+\langle\nabla f(x) \mid y-x\rangle .
$$

Characterization of differentiable convex functions

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be differentiable on $\operatorname{dom} f$, which is a nonempty open convex set.
Then, f is convex if and only if ∇f is monotone on $\operatorname{dom} f$, i.e.

$$
\left(\forall(x, y) \in(\operatorname{dom} f)^{2}\right) \quad\langle\nabla f(y)-\nabla f(x) \mid y-x\rangle \geq 0 .
$$

Characterization of strictly differentiable convex functions

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be differentiable on $\operatorname{dom} f$, which is a nonempty open convex set.
Then, f is strictly convex if and only if ∇f is strictly monotone on $\operatorname{dom} f$, i.e. for every $(x, y) \in(\operatorname{dom} f)^{2}$ with $x \neq y$,

$$
\langle\nabla f(y)-\nabla f(x) \mid y-x\rangle>0
$$

Characterization of twice differentiable convex functions

Let \mathcal{H} be a Hilbert space.
Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be a twice differentiable function on $\operatorname{dom} f$, which is a nonempty open convex set.
$\Rightarrow f$ is convex if and only if, for every $x \in \operatorname{dom} f, \nabla^{2} f(x)$ is positive semi-definite.

- If, for every $x \in \operatorname{dom} f, \nabla^{2} f(x)$ is positive definite, then f is strictly convex.

Condition for the existence of a minimizer

Theorem

Let \mathcal{H} be Hilbert space.
Let $f: \mathcal{H} \rightarrow]-\infty,+\infty$] be a differentiable convex function on $\operatorname{dom} f$, which is an open set. Let $C \subset \operatorname{dom} f$ be a nonempty convex set. $\widehat{x} \in C$ is a (global) minimizer of f on C if and only if

$$
(\forall y \in C) \quad\langle\nabla f(\widehat{x}) \mid y-\widehat{x}\rangle \geq 0
$$

If $\widehat{x} \in \operatorname{int}(C)$, then the condition reduces to

$$
\nabla f(\widehat{x})=0 .
$$

Condition for the existence of a minimizer

Theorem

Let \mathcal{H} be Hilbert space.
Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be a differentiable convex function on $\operatorname{dom} f$, which is an open set. Let $C \subset \operatorname{dom} f$ be a nonempty convex set. $\widehat{x} \in C$ is a (global) minimizer of f on C if and only if

$$
(\forall y \in C) \quad\langle\nabla f(\widehat{x}) \mid y-\widehat{x}\rangle \geq 0
$$

If $\widehat{x} \in \operatorname{int}(C)$, then the condition reduces to

$$
\nabla f(\widehat{x})=0 .
$$

Proof : We have already seen that the inequality is a necessary condition for \widehat{x} to be a local minimizer of f on C and that it reduces to the vanishing condition on the gradient if $\widehat{x} \in \operatorname{int}(C)$.

Condition for the existence of a minimizer

Theorem

Let \mathcal{H} be Hilbert space.
Let $f: \mathcal{H} \rightarrow]-\infty,+\infty$] be a differentiable convex function on $\operatorname{dom} f$, which is an open set. Let $C \subset \operatorname{dom} f$ be a nonempty convex set. $\widehat{x} \in C$ is a (global) minimizer of f on C if and only if

$$
(\forall y \in C) \quad\langle\nabla f(\widehat{x}) \mid y-\widehat{x}\rangle \geq 0
$$

If $\widehat{x} \in \operatorname{int}(C)$, then the condition reduces to

$$
\nabla f(\widehat{x})=0 .
$$

Proof : Conversely, assume that the inequality holds. Let $y \in C$. Since f is convex and Gâteaux differentiable,

$$
f(y) \geq f(\widehat{x})+\langle\nabla f(\widehat{x}) \mid y-\widehat{x}\rangle \geq f(\widehat{x}) .
$$

Hence, \widehat{x} is a minimizer of f on C.

Exercice 3

Let $f: \mathcal{H} \rightarrow \mathbb{R}$ be differentiable. Show that f is β-strongly convex if and only if

$$
\left(\forall(x, y) \in \mathcal{H}^{2}\right) \quad f(y) \geq f(x)+\langle\nabla f(x) \mid y-x\rangle+\frac{\beta}{2}\|y-x\|^{2} .
$$

Exercice 4

Let

$$
\begin{aligned}
f: \quad \mathbb{R}^{N} & \rightarrow \mathbb{R} \\
\left(x^{(i)}\right)_{1 \leq i \leq N} & \mapsto \ln \left(\sum_{i=1}^{N} \exp \left(x^{(i)}\right)\right) .
\end{aligned}
$$

Show that f is convex. Is it strictly convex?

Projections

Projection onto a closed convex set

Theorem

Let C be a nonempty closed convex set of a Hilbert space \mathcal{H}.
(i) For every $x \in \mathcal{H}$, there exists a unique point \widehat{x} in C which lies at minimum distance of x. The application $P_{C}: \mathcal{H} \rightarrow C$ which maps every $x \in \mathcal{H}$ to its associated point \widehat{x} is called the projection onto C.
(ii) For every $x \in \mathcal{H}, \widehat{x}=P_{C}(x)$ if and only if $\hat{x} \in C$ and

$$
(\forall y \in C) \quad\langle x-\widehat{x} \mid y-\widehat{x}\rangle \leq 0
$$

Geometrical interpretation

Let C be a nonempty subset of \mathcal{H}.
For every $x \in \mathcal{H}$, the normal cone to C at x is defined as

$$
N_{C}(x)= \begin{cases}\{u \in \mathcal{H} \mid(\forall y \in C) & \langle u \mid y-x\rangle \leq 0\} \\ \varnothing & \text { if } x \in C \\ \text { otherwise }\end{cases}
$$

Geometrical interpretation

Let C be a nonempty subset of \mathcal{H}.
For every $x \in \mathcal{H}$, the normal cone to C at x is defined as

$$
N_{C}(x)= \begin{cases}\{u \in \mathcal{H} \mid(\forall y \in C) \quad\langle u \mid y-x\rangle \leq 0\} & \text { if } x \in C \\ \varnothing & \text { otherwise. }\end{cases}
$$

If $x \in \operatorname{int} C$, then $N_{C}(x)=\{0\}$.

- If C is a vector space, then for every $x \in C, N_{C}(x)=C^{\perp}$.
- Let C be nonempty closed convex set of a Hilbert space \mathcal{H}. For every $x \in \mathcal{H}$,

$$
\widehat{x}=P_{C}(x) \quad \Leftrightarrow \quad x-\widehat{x} \in N_{C}(\widehat{x})
$$

Examples of projections

- If C is a (closed) vector space of a Hilbert space \mathcal{H}, then P_{C} is the (linear) orthogonal projection onto C. Then, for every $x \in \mathcal{H}$,

$$
\widehat{x}=P_{C}(x) \quad \Leftrightarrow \quad\left\{\begin{array}{l}
\widehat{x} \in C \\
x-\widehat{x} \in C^{\perp}
\end{array}\right.
$$

Properties of the projection

- Let C be a nonempty closed convex set of a Hilbert space \mathcal{H}. The projection onto C is a firmly nonexpansive operator, i.e.

$$
\left(\forall(x, y) \in \mathcal{H}^{2}\right) \quad\left\|P_{C}(x)-P_{C}(y)\right\|^{2} \leq\left\langle x-y \mid P_{C}(x)-P_{C}(y)\right\rangle
$$

Properties of the projection

- Let C be a nonempty closed convex set of a Hilbert space \mathcal{H}. The projection onto C is a firmly nonexpansive operator, i.e.

$$
\left(\forall(x, y) \in \mathcal{H}^{2}\right) \quad\left\|P_{C}(x)-P_{C}(y)\right\|^{2} \leq\left\langle x-y \mid P_{C}(x)-P_{C}(y)\right\rangle
$$

Properties of the projection

- Let C be a nonempty closed convex set of a Hilbert space \mathcal{H}. The projection onto C is a firmly nonexpansive operator, i.e.

$$
\left(\forall(x, y) \in \mathcal{H}^{2}\right) \quad\left\|P_{C}(x)-P_{C}(y)\right\|^{2} \leq\left\langle x-y \mid P_{C}(x)-P_{C}(y)\right\rangle
$$

- The projection onto C is a nonexpansive operator, i.e.

$$
\left(\forall(x, y) \in \mathcal{H}^{2}\right) \quad\left\|P_{C}(x)-P_{C}(y)\right\| \leq\|x-y\|
$$

- The projection onto C is uniformly continuous. The distance to C defined as

$$
(\forall x \in \mathcal{H}) \quad d_{C}(x)=\inf _{y \in C}\|x-y\|=\left\|x-P_{C}(x)\right\|
$$

is continuous.

Exercise 5

Let \mathcal{H} and \mathcal{G} be Hilbert spaces.
Let D be a nonempty closed convex set of \mathcal{G}.
Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$ be a bijective isometry and let

$$
C=\{x \in \mathcal{H} \mid L x \in D\}
$$

1. Show that the projection onto C is well-defined.
2. Show that $P_{C}=L^{*} \circ P_{D} \circ L$.
3. Express P_{C} when $\mathcal{H}=\mathcal{G}=\mathbb{R}^{N}$ and $D=\left[0,+\infty\left[{ }^{N}\right.\right.$.
