Master MVA
 Optimization Reminders Part II

Jean-Christophe Pesquet

Center for Visual Computing Inria, CentraleSupélec Institut Universitaire de France jean-christophe@pesquet.eu

Iterating projections

Feasibility problem

Problem

Let \mathcal{H} be a Hilbert space. Let $m \in \mathbb{N} \backslash\{0,1\}$.
Let $\left(C_{i}\right)_{1 \leq i \leq m}$ be closed convex subsets of \mathcal{H} such that $\bigcap_{i=1}^{m} C_{i} \neq \varnothing$.
We want to

$$
\text { Find } \hat{x} \in \bigcap_{i=1}^{m} C_{i} \text {. }
$$

POCS (Projection Onto Convex Sets) algorithm

For every $n \in \mathbb{N} \backslash\{0\}$, let $i_{n}-1$ denote the remainder after division of $n-1$ by m.

Set $x_{0} \in \mathcal{H}$
For $n=1, \ldots$

$$
\left\lfloor x_{n+1}=P_{C_{i_{n}}}\left(x_{n}\right) .\right.
$$

Feasibility problem

Problem

Let \mathcal{H} be a Hilbert space. Let $m \in \mathbb{N} \backslash\{0,1\}$.
Let $\left(C_{i}\right)_{1 \leq i \leq m}$ be closed convex subsets of \mathcal{H} such that $\bigcap_{i=1}^{m} C_{i} \neq \varnothing$.
We want to

$$
\text { Find } \widehat{x} \in \bigcap_{i=1}^{m} C_{i} \text {. }
$$

POCS (Projection Onto Convex Sets) algorithm

Let $\left(\lambda_{n}\right)_{n \geq 1}$ be a sequence of $\left[\epsilon_{1}, 2-\epsilon_{2}\right]$ with $\left.\left(\epsilon_{1}, \epsilon_{2}\right) \in\right] 0,+\infty\left[^{2}\right.$ such that $\epsilon_{1}+\epsilon_{2}<2$.
For every $n \in \mathbb{N} \backslash\{0\}$, let $i_{n}-1$ denote the remainder after division of $n-1$ by m.

Set $x_{0} \in \mathcal{H}$
For $n=1, \ldots$

$$
\left\lfloor x_{n+1}=x_{n}+\lambda_{n}\left(P_{C_{i n}}\left(x_{n}\right)-x_{n}\right) .\right.
$$

Convergence of POCS

Theorem

The sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ generated by the POCS algorithm converges to a point in $\bigcap_{i=1}^{m} C_{i}$.

Exercise 1

Let \mathcal{H} be a real Hilbert space.

1. Let $c \in \mathcal{H}$ and $\rho \in] 0,+\infty[$. What is the expression of the projection onto a closed ball $B(c, \rho)$ with center c and radius ρ ?
2. We consider three closed balls which are assumed to have a common point. Propose an algorithms to compute such a point.

Lagrange duality

Constrained optimization problem

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$.
Let $(m, q) \in \mathbb{N}^{2}$. For every $i \in\{1, \ldots, m\}$, let $g_{i}: \mathcal{H} \rightarrow \mathbb{R}$ and for every $j \in\{1, \ldots, q\}$, let $h_{j}: \mathcal{H} \rightarrow \mathbb{R}$.
Let

$$
\begin{aligned}
C=\{x \in \mathcal{H} \mid & (\forall i \in\{1, \ldots, m\}) \quad g_{i}(x)=0 \\
& \left.(\forall j \in\{1, \ldots, q\}) h_{j}(x) \leq 0\right\} .
\end{aligned}
$$

We want to:
Find $\hat{x} \in \operatorname{Argmin} f(x)$.

$$
x \in C
$$

Remark: A vector $x \in \mathcal{H}$ is said to be feasible if $x \in \operatorname{dom} f \cap C$.

Definitions

The Lagrange function (or Lagrangian) associated with the previous problem is defined as

$$
\begin{aligned}
(\forall x \in \mathcal{H})\left(\forall \mu=\left(\mu_{i}\right)_{1 \leq i \leq m} \in \mathbb{R}^{m}\right) & \left(\forall \lambda=\left(\lambda_{j}\right)_{1 \leq j \leq q} \in\left[0,+\infty\left[^{q}\right)\right.\right. \\
\mathcal{L}(x, \mu, \lambda) & =f(x)+\sum_{i=1}^{m} \mu_{i} g_{i}(x)+\sum_{j=1}^{q} \lambda_{j} h_{j}(x) .
\end{aligned}
$$

The vectors μ and λ are called Lagrange multipliers .
$\underline{\text { Remark: } \operatorname{dom} \mathcal{L}=\operatorname{dom} f \times \mathbb{R}^{m} \times\left[0,+\infty\left[^{q} .\right.\right.}$

Saddle points

$(\widehat{x}, \widehat{\mu}, \widehat{\lambda}) \in \mathcal{H} \times \mathbb{R}^{m} \times\left[0,+\infty{ }^{[}{ }^{q}\right.$ is saddle point of \mathcal{L} if

$$
\left(\forall(x, \mu, \lambda) \in \mathcal{H} \times \mathbb{R}^{m} \times\left[0,+\infty\left[^{q}\right) \quad \mathcal{L}(\widehat{x}, \mu, \lambda) \leq \mathcal{L}(\widehat{x}, \widehat{\mu}, \widehat{\lambda}) \leq \mathcal{L}(x, \widehat{\mu}, \widehat{\lambda}) .\right.\right.
$$

Saddle points

$(\widehat{x}, \widehat{\mu}, \widehat{\lambda}) \in \mathcal{H} \times \mathbb{R}^{m} \times\left[0,+\infty\left[^{q}\right.\right.$ is saddle point of \mathcal{L} if
$\left(\forall(x, \mu, \lambda) \in \mathcal{H} \times \mathbb{R}^{m} \times\left[0,+\infty\left[^{q}\right) \quad \mathcal{L}(\widehat{x}, \mu, \lambda) \leq \mathcal{L}(\widehat{x}, \widehat{\mu}, \widehat{\lambda}) \leq \mathcal{L}(x, \widehat{\mu}, \widehat{\lambda})\right.\right.$.

Theorem

Let $\underline{\mathcal{L}}$ and $\overline{\mathcal{L}}$ be defined as

$$
\begin{aligned}
\left(\forall(\mu, \lambda) \in \mathbb{R}^{m} \times\left[0,+\infty\left[^{q}\right)\right.\right. & \underline{\mathcal{L}}(\mu, \lambda)=\inf _{x \in \mathcal{H}} \mathcal{L}(x, \mu, \lambda) \\
(\forall x \in \mathcal{H}) & \overline{\mathcal{L}}(x)=\sup _{\mu \in \mathbb{R}^{m}, \lambda \in\left[0,+\infty\left[{ }^{q}\right.\right.} \mathcal{L}(x, \mu, \lambda) .
\end{aligned}
$$

$(\widehat{x}, \widehat{\mu}, \widehat{\lambda}) \in \mathcal{H} \times \mathbb{R}^{m} \times\left[0,+\infty\left[{ }^{q}\right.\right.$ is a saddle point of \mathcal{L} if and only if

$$
\begin{aligned}
& (\forall x \in \mathcal{H}) \quad \overline{\mathcal{L}}(\widehat{x}) \leq \overline{\mathcal{L}}(x) \\
& \left(\forall(\mu, \lambda) \in \mathbb{R}^{m} \times\left[0,+\infty\left[^{q}\right) \quad \underline{\mathcal{L}}(\mu, \lambda) \leq \underline{\mathcal{L}}(\widehat{\mu}, \widehat{\lambda})\right.\right. \\
& \underline{\mathcal{L}}(\widehat{\mu}, \widehat{\lambda})=\overline{\mathcal{L}}(\widehat{x})
\end{aligned}
$$

Saddle points

Theorem

Let $\underline{\mathcal{L}}$ and $\overline{\mathcal{L}}$ be defined as

$$
\begin{aligned}
\left(\forall(\mu, \lambda) \in \mathbb{R}^{m} \times\left[0,+\infty\left[^{q}\right)\right.\right. & \underline{\mathcal{L}}(\mu, \lambda)=\inf _{x \in \mathcal{H}} \mathcal{L}(x, \mu, \lambda) \\
(\forall x \in \mathcal{H}) & \overline{\mathcal{L}}(x)=\sup _{\mu \in \mathbb{R}^{m}, \lambda \in\left[0,+\infty\left[{ }^{q}\right.\right.} \mathcal{L}(x, \mu, \lambda) .
\end{aligned}
$$

$(\widehat{x}, \widehat{\mu}, \widehat{\lambda}) \in \mathcal{H} \times \mathbb{R}^{m} \times\left[0,+\infty{ }^{9}\right.$ is a saddle point of \mathcal{L} if and only if

$$
\begin{aligned}
& (\forall x \in \mathcal{H}) \quad \overline{\mathcal{L}}(\widehat{x}) \leq \overline{\mathcal{L}}(x) \\
& \left(\forall(\mu, \lambda) \in \mathbb{R}^{m} \times\left[0,+\infty\left[^{q}\right) \quad \underline{\mathcal{L}}(\mu, \lambda) \leq \underline{\mathcal{L}}(\widehat{\mu}, \widehat{\lambda})\right.\right. \\
& \underline{\mathcal{L}}(\widehat{\mu}, \widehat{\lambda})=\overline{\mathcal{L}}(\widehat{x})
\end{aligned}
$$

Remark: $\overline{\mathcal{L}}$ is called the primal Lagrange function and
$\underline{\mathcal{L}}$ the dual Lagrange function.

Sufficient condition for a constrained minimum

Assume that there exists a feasible point.
If $(\widehat{x}, \widehat{\mu}, \widehat{\lambda}) \in \mathcal{H} \times \mathbb{R}^{m} \times\left[0,+\infty{ }^{q}\right.$ is a saddle point of \mathcal{L}, then \widehat{x} is minimizer of f over C.
In addition, the complementary slackness condition holds:

$$
(\forall j \in\{1, \ldots, q\}) \quad \hat{\lambda}_{j} h_{j}(\widehat{x})=0
$$

Convex case

Assume that f is a convex function, $\left(g_{i}\right)_{1 \leq i \leq m}$ are affine functions and $\left(h_{j}\right)_{1 \leq j \leq q}$ are convex functions. Assume that the Slater condition holds, i.e. there exists $\bar{x} \in \operatorname{dom} f$ such that

$$
\begin{array}{ll}
(\forall i \in\{1, \ldots, m\}) & g_{i}(\bar{x})=0 \\
(\forall j \in\{1, \ldots, q\}) & h_{j}(\bar{x})<0
\end{array}
$$

\widehat{x} is a minimizer of f over C if and only if there exists $\widehat{\mu} \in \mathbb{R}^{m}$ and $\hat{\lambda} \in$ $\left[0,+\infty\left[{ }^{q}\right.\right.$ such that $(\widehat{x}, \widehat{\mu}, \widehat{\lambda})$ is a saddle point of the Lagrangian.

Convex case

Assume that f is a convex function, $\left(g_{i}\right)_{1 \leq i \leq m}$ are affine functions and $\left(h_{j}\right)_{1 \leq j \leq q}$ are convex functions. Assume that the Slater condition holds, i.e. there exists $\bar{x} \in \operatorname{dom} f$ such that

$$
\begin{array}{ll}
(\forall i \in\{1, \ldots, m\}) & g_{i}(\bar{x})=0 \\
(\forall j \in\{1, \ldots, q\}) & h_{j}(\bar{x})<0
\end{array}
$$

\widehat{x} is a minimizer of f over C if and only if there exists $\widehat{\mu} \in \mathbb{R}^{m}$ and $\widehat{\lambda} \in$ $\left[0,+\infty\left[{ }^{q}\right.\right.$ such that $(\hat{x}, \widehat{\mu}, \widehat{\lambda})$ is a saddle point of the Lagrangian.

Remark: Under the assumptions of the above theorem, if \widehat{x} is a minimizer of f over C then $\mathcal{L}(\cdot, \widehat{\mu}, \widehat{\lambda})$ is a convex function which is minimum at \widehat{x}. This optimality condition is often used to calculate \widehat{x}, in conjunction with the complementary slackness condition.

Differentiable case

Karush-Kuhn-Tucker (KKT) theorem

Assume that $f,\left(g_{i}\right)_{1 \leq i \leq m}$, and $\left(h_{j}\right)_{1 \leq j \leq q}$ are continuously differentiable on $\mathcal{H}=\mathbb{R}^{N}$.
Assume that \hat{x} is a local minimizer of f over C satisfying the following Mangasarian-Fromovitz constraint qualification conditions :
(i) $\left\{\nabla g_{i}(\widehat{x}) \mid i \in\{1, \ldots, m\}\right\}$ is a family of linearly independent vectors;
(ii) there exists $z \in \mathbb{R}^{N}$ such that

$$
\begin{aligned}
(\forall i \in\{1, \ldots, m\}) & \left\langle\nabla g_{i}(\widehat{x}) \mid z\right\rangle=0 \\
(\forall j \in J(\widehat{x})) & \left\langle\nabla h_{j}(\widehat{x}) \mid z\right\rangle<0
\end{aligned}
$$

where $J(\widehat{x})=\left\{j \in\{1, \ldots, q\} \mid h_{j}(\widehat{x})=0\right\}$ is the set of active inequality constraints at \widehat{x}.
Then, there exists $\widehat{\mu} \in \mathbb{R}^{N}$ and $\widehat{\lambda} \in\left[0,+\infty\left[{ }^{q}\right.\right.$ such that \widehat{x} is a critical point of $\mathcal{L}(\cdot, \widehat{\mu}, \widehat{\lambda})$ and the complementary slackness condition holds.

Differentiable case

Karush-Kuhn-Tucker (KKT) theorem

Assume that $f,\left(g_{i}\right)_{1 \leq i \leq m}$, and $\left(h_{j}\right)_{1 \leq j \leq q}$ are continuously differentiable on $\mathcal{H}=\mathbb{R}^{N}$.
Assume that \hat{x} is a local minimizer of f over C satisfying the following Mangasarian-Fromovitz constraint qualification conditions:
(i) $\left\{\nabla g_{i}(\widehat{x}) \mid i \in\{1, \ldots, m\}\right\}$ is a family of linearly independent vectors;
(ii) there exists $z \in \mathbb{R}^{N}$ such that

$$
\begin{aligned}
(\forall i \in\{1, \ldots, m\}) & \left\langle\nabla g_{i}(\widehat{x}) \mid z\right\rangle=0 \\
(\forall j \in J(\widehat{x})) & \left\langle\nabla h_{j}(\widehat{x}) \mid z\right\rangle<0
\end{aligned}
$$

Then, there exists $\widehat{\mu} \in \mathbb{R}^{N}$ and $\widehat{\lambda} \in\left[0,+\infty\left[{ }^{q}\right.\right.$ such that \widehat{x} is a critical point of $\mathcal{L}(\cdot, \widehat{\mu}, \widehat{\lambda})$ and the complementary slackness condition holds.
Remark: A sufficient condition for Mangasarian-Fromovitz conditions to be satisfied is that $\left\{\nabla g_{i}(\widehat{x}) \mid i \in\{1, \ldots, m\}\right\} \cup\left\{\nabla h_{j}(\widehat{x}) \mid j \in J(\widehat{x})\right\}$ is a family of linearly independent vectors.

Exercise 2

Let f be defined as

$$
\left(\forall x=\left(x^{(i)}\right)_{1 \leq i \leq N} \in \mathbb{R}^{N}\right) \quad f(x)=\sum_{i=1}^{N} \exp \left(x^{(i)}\right)
$$

with $N>1$. We want to find a minimizer of f on \mathbb{R}^{N} subject to the constraints

$$
\begin{aligned}
& \sum_{i=1}^{N} x^{(i)}=1 \\
& (\forall i \in\{1, \ldots, N\}) \quad x^{(i)} \geq 0 .
\end{aligned}
$$

1. What can be said about the existence/uniqueness of a solution to this problem ?
2. Apply the Lagrange multiplier method.

Exercise 3

By using the Lagrange multipliers method, solve the following problem

$$
\left(x^{(N)}\right)^{3}-\frac{1}{2}\left(x^{(N)}\right)^{2}
$$

where B is the unit sphere, centered at 0 , of \mathbb{R}^{N}.

A few algorithms

Problem

Let \mathcal{H} be a Hilbert space.
Let $f: \mathcal{H} \rightarrow \mathbb{R}$ be differentiable.
Let C be a nonempty closed convex subset of \mathcal{H}.
We want to:
Find $\widehat{x} \in \operatorname{Argmin} f(x)$.

$$
x \in C
$$

Problem

Let \mathcal{H} be a Hilbert space.
Let $f: \mathcal{H} \rightarrow \mathbb{R}$ be differentiable.
Let C be a nonempty closed convex subset of \mathcal{H}.
We want to:

$$
\text { Find } \widehat{x} \in \underset{x \in C}{\operatorname{Argmin}} f(x)
$$

Objective: Build a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ converging to a minimizer.

Principle of first-order methods

- If f is differentiable, then, at iteration n, we have

$$
(\forall x \in \mathcal{H}) \quad f(x)=f\left(x_{n}\right)+\left\langle\nabla f\left(x_{n}\right) \mid x-x_{n}\right\rangle+o\left(\left\|x-x_{n}\right\|\right) .
$$

So if $\left\|x_{n+1}-x_{n}\right\|$ is small enough and x_{n+1} is chosen such that

$$
\left\langle\nabla f\left(x_{n}\right) \mid x_{n+1}-x_{n}\right\rangle<0
$$

then $f\left(x_{n+1}\right)<f\left(x_{n}\right)$.

- In particular, the steepest descent direction is given by

$$
\left.x_{n+1}-x_{n}=-\gamma_{n} \nabla f\left(x_{n}\right), \quad \gamma_{n} \in\right] 0,+\infty[
$$

- To secure that the solution belongs to C we can add a projection step.
- A relaxation parameter λ_{n} can also be added.

Principle of first-order methods

The projected gradient algorithm has the following form:

$$
\left.x_{n+1}=x_{n}+\lambda_{n}\left(P_{C}\left(x_{n}-\gamma_{n} \nabla f\left(x_{n}\right)\right)-x_{n}\right)\right)
$$

where $\left.\gamma_{n} \in\right] 0,+\infty\left[\right.$ and $\left.\left.\lambda_{n} \in\right] 0,1\right]$.

Principle of first-order methods

The projected gradient algorithm has the following form:

$$
\left.x_{n+1}=x_{n}+\lambda_{n}\left(P_{C}\left(x_{n}-\gamma_{n} \nabla f\left(x_{n}\right)\right)-x_{n}\right)\right)
$$

where $\left.\gamma_{n} \in\right] 0,+\infty\left[\right.$ and $\left.\left.\lambda_{n} \in\right] 0,1\right]$.

Remark: x is a fixed point of the projected gradient iteration if and only if $x \in C$ and

$$
(\forall y \in C) \quad\langle\nabla f(x) \mid y-x\rangle \geq 0
$$

Principle of first-order methods

The projected gradient algorithm has the following form:

$$
\left.x_{n+1}=x_{n}+\lambda_{n}\left(P_{C}\left(x_{n}-\gamma_{n} \nabla f\left(x_{n}\right)\right)-x_{n}\right)\right)
$$

where $\left.\gamma_{n} \in\right] 0,+\infty\left[\right.$ and $\left.\left.\lambda_{n} \in\right] 0,1\right]$.

Remark: x is a fixed point of the projected gradient iteration if and only if $x \in C$ and

$$
(\forall y \in C) \quad\langle\nabla f(x) \mid y-x\rangle \geq 0
$$

Proof: If x is a fixed point, then

$$
\begin{aligned}
& x=x+\lambda_{n}\left(P_{C}\left(x-\gamma_{n} \nabla f(x)\right)-x\right) \\
\Leftrightarrow \quad & x=P_{C}\left(x-\gamma_{n} \nabla f(x)\right) .
\end{aligned}
$$

According to the characterization of the projection, for every $y \in C$,

$$
\begin{aligned}
& \left\langle x-\gamma_{n} \nabla f(x)-x \mid y-x\right\rangle \leq 0 \\
\Leftrightarrow & \langle\nabla f(x) \mid y-x\rangle \geq 0 .
\end{aligned}
$$

Principle of first-order methods

The projected gradient algorithm has the following form:

$$
\left.x_{n+1}=x_{n}+\lambda_{n}\left(P_{C}\left(x_{n}-\gamma_{n} \nabla f\left(x_{n}\right)\right)-x_{n}\right)\right)
$$

where $\left.\gamma_{n} \in\right] 0,+\infty\left[\right.$ and $\left.\left.\lambda_{n} \in\right] 0,1\right]$.

Remark:

x is a fixed point of the projected gradient iteration if and only if $x \in C$ and

$$
(\forall y \in C) \quad\langle\nabla f(x) \mid y-x\rangle \geq 0
$$

- When f is convex, x is a fixed point of the projected gradient iteration if and only if x is a global minimizer of f over C.

Principle of first-order methods

The projected gradient algorithm has the following form:

$$
\left.x_{n+1}=x_{n}+\lambda_{n}\left(P_{C}\left(x_{n}-\gamma_{n} \nabla f\left(x_{n}\right)\right)-x_{n}\right)\right)
$$

where $\left.\gamma_{n} \in\right] 0,+\infty\left[\right.$ and $\left.\left.\lambda_{n} \in\right] 0,1\right]$.

Remark: If $C=\mathcal{H}$ and $\lambda_{n}=1$, we recover the standard gradient descent iteration:

$$
x_{n+1}=x_{n}-\gamma_{n} \nabla f\left(x_{n}\right)
$$

Convergence

Convergence theorem

Assume that f is convex and has a Lipschtzian gradient with constant $\beta \in] 0,+\infty[$, i.e.

$$
\left(\forall(x, y) \in \mathcal{H}^{2}\right) \quad\|\nabla f(x)-\nabla f(y)\| \leq \beta\|x-y\| .
$$

Assume that $\operatorname{Argmin}_{x \in C} f(x) \neq \varnothing$.
Assume that $\inf _{n \in \mathbb{N}} \gamma_{n}>0, \sup _{n \in \mathbb{N}} \gamma_{n}<2 / \beta, \inf _{n \in \mathbb{N}} \lambda_{n}>0$, and $\sup _{n \in \mathbb{N}} \lambda_{n} \leq 1$.
Then the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ generated by the projected gradient algorithm converges to a minimizer of f over C.

Convergence

Convergence theorem

Assume that f is convex and has a Lipschtzian gradient with constant $\beta \in] 0,+\infty[$.
Assume that $\operatorname{Argmin}_{x \in C} f(x) \neq \varnothing$.
Assume that $\inf _{n \in \mathbb{N}} \gamma_{n}>0, \sup _{n \in \mathbb{N}} \gamma_{n}<2 / \beta, \inf _{n \in \mathbb{N}} \lambda_{n}>0$, and $\sup _{n \in \mathbb{N}} \lambda_{n} \leq 1$.
Then the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ generated by the projected gradient algorithm converges to a minimizer of f over C.
In addition, if f is strongly convex, the convergence is linear, i.e. there exists $\chi \in[0,1[$ such that

$$
(\forall n \in \mathbb{N}) \quad\left\|x_{n}-\widehat{x}\right\| \leq \chi^{n}\left\|x_{0}-\widehat{x}\right\|
$$

where \widehat{x} is the unique minimizer of f over C.

Convergence

Convergence theorem

Assume that f is convex and has a Lipschtzian gradient with constant $\beta \in] 0,+\infty[$.
Assume that $\operatorname{Argmin}_{x \in C} f(x) \neq \varnothing$.
Assume that $\inf _{n \in \mathbb{N}} \gamma_{n}>0, \sup _{n \in \mathbb{N}} \gamma_{n}<2 / \beta, \inf _{n \in \mathbb{N}} \lambda_{n}>0$, and $\sup _{n \in \mathbb{N}} \lambda_{n} \leq 1$.
Then the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ generated by the projected gradient algorithm converges to a minimizer of f over C.

Remark: If f is non convex with a β-Lipschtzian gradient, it can only be proved that $\left(f\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ is a converging sequence provided that $\gamma_{n} \leq 1 / \beta$.

Example: Uzawa algorithm

Problem

Let $\mathcal{L}: \mathcal{H} \times\left[0,+\infty\left[^{q} \rightarrow \mathbb{R}\right.\right.$ be differentiable with respect to its second argument. We want to find a saddle point of \mathcal{L}

Solution

Set $\lambda_{0} \in\left[0,+\infty{ }^{q}\right.$
For $n=1, \ldots$

$$
\begin{aligned}
& \text { Set } \left.\left.\gamma_{n} \in\right] 0,+\infty\left[, \rho_{n} \in\right] 0,1\right] \\
& x_{n} \in \operatorname{Argmin} \mathcal{L}\left(\cdot, \lambda_{n}\right) \\
& \lambda_{n+1}=\lambda_{n}+\rho_{n}\left(P_{\left[0,+\infty\left[^{q}\right.\right.}\left(\lambda_{n}+\gamma_{n} \nabla_{\lambda} \mathcal{L}\left(x_{n}, \lambda_{n}\right)\right)-\lambda_{n}\right) .
\end{aligned}
$$

Principle of second-order methods

- If f is twice differentiable, then, at iteration n, we have

$$
\begin{aligned}
(\forall x \in \mathcal{H}) \quad f(x)= & f\left(x_{n}\right)+\left\langle\nabla f\left(x_{n}\right) \mid x-x_{n}\right\rangle \\
& +\frac{1}{2}\left\langle\left(x-x_{n}\right) \mid \nabla^{2} f\left(x_{n}\right)\left(x-x_{n}\right)\right\rangle+o\left(\left\|x-x_{n}\right\|^{2}\right) .
\end{aligned}
$$

\Rightarrow If $\nabla^{2} f\left(x_{n}\right)$ is positive definite, the minimizer x_{n+1} of the quadratic term is given by Newton's iteration

$$
\begin{aligned}
& \nabla f\left(x_{n}\right)+\nabla^{2} f\left(x_{n}\right)\left(x_{n+1}-x_{n}\right)=0 \\
\Leftrightarrow \quad & x_{n+1}=x_{n}-\left(\nabla^{2} f\left(x_{n}\right)\right)^{-1} \nabla f\left(x_{n}\right) .
\end{aligned}
$$

Convergence

Convergence theorem

Let $f \in \mathcal{H} \rightarrow]-\infty,+\infty$] be three times continuously differentiable in a neigborhood of a local minimizer \widehat{x} and assume that $\nabla^{2} f(\widehat{x})$ is positive definite.
Then, there exists $\epsilon \in] 0,+\infty\left[\right.$ such that, if $\left\|x_{0}-\widehat{x}\right\| \leq \epsilon$, then $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to \widehat{x}.
In addition, the convergence is quadratic, i.e. there exists $\kappa \in] 0,+\infty[$ such that

$$
(\forall n \in \mathbb{N}) \quad\left\|x_{n+1}-\widehat{x}\right\| \leq \kappa\left\|x_{n}-\widehat{x}\right\|^{2}
$$

Numerical behaviour

$>$ Although the convergence of Newton's algorithm is faster than the gradient descent in terms of iteration number, the computational cost of each iteration is higher.

- To improve the convergence guarantees of Newton's algorithm, we may practically modify it as follows:

$$
(\forall n \in \mathbb{N}) \quad x_{n+1}=x_{n}-\gamma_{n}\left(\nabla^{2} f\left(x_{n}\right)+\lambda_{n} \mathrm{Id}\right)^{-1} \nabla f\left(x_{n}\right)
$$

with $\left.\left(\gamma_{n}, \lambda_{n}\right) \in\right] 0,+\infty\left[^{2}\right.$.

- Quasi-Newton algorithms read

$$
(\forall n \in \mathbb{N}) \quad x_{n+1}=x_{n}-H_{n}^{-1} \nabla f\left(x_{n}\right)
$$

where H_{n} is a definite positive matrix providing some approximation to the Hessian.

Exercise 4

Let \mathcal{H} and \mathcal{G} be real Hilbert spaces and let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Let $y \in \mathcal{G}$ and let $\alpha \in] 0,+\infty[$.
We want to minimize the function defined as

$$
(\forall x \in \mathcal{H}) \quad f(x)=\frac{1}{2}\|L x-y\|^{2}+\frac{\alpha}{2}\|x\|^{2} .
$$

1. Give the form of the gradient descent algorithm allowing us to solve this problem.
2. How does Newton's algorithm read for this function ?
3. Study the convergence of the gradient descent algorithm by performing the eigendecomposition of $L^{*} L$.
