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Iterating projections
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Feasibility problem

Problem

Let H be a Hilbert space. Let m ∈ N \ {0, 1}.

Let (Ci )1≤i≤m be closed convex subsets of H such that
m⋂
i=1

Ci 6= ∅.

We want to

Find x̂ ∈
m⋂
i=1

Ci .

POCS (Projection Onto Convex Sets) algorithm

For every n ∈ N\{0}, let in−1 denote the remainder after division of n−1
by m.

Set x0 ∈ H
For n = 1, . . .⌊

xn+1 = PCin
(xn).
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Feasibility problem

Problem

Let H be a Hilbert space. Let m ∈ N \ {0, 1}.

Let (Ci )1≤i≤m be closed convex subsets of H such that
m⋂
i=1

Ci 6= ∅.

We want to

Find x̂ ∈
m⋂
i=1

Ci .

POCS (Projection Onto Convex Sets) algorithm

Let (λn)n≥1 be a sequence of [ε1, 2− ε2] with (ε1, ε2) ∈ ]0,+∞[2 such that
ε1 + ε2 < 2.
For every n ∈ N\{0}, let in−1 denote the remainder after division of n−1
by m.

Set x0 ∈ H
For n = 1, . . .⌊

xn+1 = xn + λn(PCin
(xn)− xn).
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Convergence of POCS

Theorem

The sequence (xn)n∈N generated by the POCS algorithm converges to a

point in
m⋂
i=1

Ci .
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Exercise 1

Let H be a real Hilbert space.

1. Let c ∈ H and ρ ∈ ]0,+∞[. What is the expression of the projection
onto a closed ball B(c , ρ) with center c and radius ρ ?

2. We consider three closed balls which are assumed to have a common
point. Propose an algorithms to compute such a point.
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Lagrange duality
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Constrained optimization problem

Let H be a Hilbert space. Let f : H → ]−∞,+∞].
Let (m, q) ∈ N2. For every i ∈ {1, . . . ,m}, let gi : H → R and
for every j ∈ {1, . . . , q}, let hj : H → R.
Let

C = {x ∈ H | (∀i ∈ {1, . . . ,m}) gi (x) = 0

(∀j ∈ {1, . . . , q}) hj(x) ≤ 0}.

We want to:
Find x̂ ∈ Argmin

x∈C
f (x).

Remark: A vector x ∈ H is said to be feasible if x ∈ dom f ∩ C .
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Definitions

The Lagrange function (or Lagrangian) associated with the previous prob-
lem is defined as

(∀x ∈ H)(∀µ = (µi )1≤i≤m ∈ Rm)(∀λ = (λj)1≤j≤q ∈ [0,+∞[q)

L(x , µ, λ) = f (x) +
m∑
i=1

µigi (x) +

q∑
j=1

λjhj(x).

The vectors µ and λ are called Lagrange multipliers .

Remark: domL = dom f × Rm× [0,+∞[q .
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Saddle points

(x̂ , µ̂, λ̂) ∈ H × Rm × [0,+∞[q is saddle point of L if(
∀(x , µ, λ) ∈ H×Rm×[0,+∞[q

)
L(x̂ , µ, λ) ≤ L(x̂ , µ̂, λ̂) ≤ L(x , µ̂, λ̂).
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Saddle points

(x̂ , µ̂, λ̂) ∈ H × Rm × [0,+∞[q is saddle point of L if(
∀(x , µ, λ) ∈ H×Rm×[0,+∞[q

)
L(x̂ , µ, λ) ≤ L(x̂ , µ̂, λ̂) ≤ L(x , µ̂, λ̂).

Theorem

Let L and L be defined as

(∀(µ, λ) ∈ Rm × [0,+∞[q) L(µ, λ) = inf
x∈H
L(x , µ, λ)

(∀x ∈ H) L(x) = sup
µ∈Rm,λ∈[0,+∞[q

L(x , µ, λ).

(x̂ , µ̂, λ̂) ∈ H × Rm × [0,+∞[q is a saddle point of L if and only if

(∀x ∈ H) L(x̂) ≤ L(x)

(∀(µ, λ) ∈ Rm × [0,+∞[q) L(µ, λ) ≤ L(µ̂, λ̂)

L(µ̂, λ̂) = L(x̂).
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Saddle points

Theorem

Let L and L be defined as

(∀(µ, λ) ∈ Rm × [0,+∞[q) L(µ, λ) = inf
x∈H
L(x , µ, λ)

(∀x ∈ H) L(x) = sup
µ∈Rm,λ∈[0,+∞[q

L(x , µ, λ).

(x̂ , µ̂, λ̂) ∈ H × Rm × [0,+∞[q is a saddle point of L if and only if

(∀x ∈ H) L(x̂) ≤ L(x)

(∀(µ, λ) ∈ Rm × [0,+∞[q) L(µ, λ) ≤ L(µ̂, λ̂)

L(µ̂, λ̂) = L(x̂).

Remark: L is called the primal Lagrange function and

L the dual Lagrange function .
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Sufficient condition for a constrained minimum

Assume that there exists a feasible point.
If (x̂ , µ̂, λ̂) ∈ H × Rm × [0,+∞[q is a saddle point of L,
then x̂ is minimizer of f over C .
In addition, the complementary slackness condition holds:

(∀j ∈ {1, . . . , q}) λ̂jhj(x̂) = 0.
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Convex case

Assume that f is a convex function, (gi )1≤i≤m are affine functions and
(hj)1≤j≤q are convex functions. Assume that the Slater condition holds,
i.e. there exists x ∈ dom f such that

(∀i ∈ {1, . . . ,m}) gi (x) = 0

(∀j ∈ {1, . . . , q}) hj(x) < 0.

x̂ is a minimizer of f over C if and only if there exists µ̂ ∈ Rm and λ̂ ∈
[0,+∞[q such that (x̂ , µ̂, λ̂) is a saddle point of the Lagrangian.
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Convex case

Assume that f is a convex function, (gi )1≤i≤m are affine functions and
(hj)1≤j≤q are convex functions. Assume that the Slater condition holds,
i.e. there exists x ∈ dom f such that

(∀i ∈ {1, . . . ,m}) gi (x) = 0

(∀j ∈ {1, . . . , q}) hj(x) < 0.

x̂ is a minimizer of f over C if and only if there exists µ̂ ∈ Rm and λ̂ ∈
[0,+∞[q such that (x̂ , µ̂, λ̂) is a saddle point of the Lagrangian.

Remark: Under the assumptions of the above theorem, if x̂ is a minimizer
of f over C then L(·, µ̂, λ̂) is a convex function which is minimum at x̂ .
This optimality condition is often used to calculate x̂ , in conjunction with
the complementary slackness condition.
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Differentiable case

Karush-Kuhn-Tucker (KKT) theorem

Assume that f , (gi )1≤i≤m, and (hj)1≤j≤q are continuously differentiable on
H = RN .
Assume that x̂ is a local minimizer of f over C satisfying the following
Mangasarian-Fromovitz constraint qualification conditions :

(i) {∇gi (x̂) | i ∈ {1, . . . ,m}} is a family of linearly independent vectors;
(ii) there exists z ∈ RN such that

(∀i ∈ {1, . . . ,m}) 〈∇gi (x̂) | z〉 = 0

(∀j ∈ J(x̂)) 〈∇hj(x̂) | z〉 < 0

where J(x̂) = {j ∈ {1, . . . , q} | hj(x̂) = 0} is the set of

active inequality constraints at x̂ .

Then, there exists µ̂ ∈ RN and λ̂ ∈ [0,+∞[q such that x̂ is a critical point
of L(·, µ̂, λ̂) and the complementary slackness condition holds.
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Differentiable case

Karush-Kuhn-Tucker (KKT) theorem

Assume that f , (gi )1≤i≤m, and (hj)1≤j≤q are continuously differentiable on
H = RN .
Assume that x̂ is a local minimizer of f over C satisfying the following
Mangasarian-Fromovitz constraint qualification conditions :

(i) {∇gi (x̂) | i ∈ {1, . . . ,m}} is a family of linearly independent vectors;
(ii) there exists z ∈ RN such that

(∀i ∈ {1, . . . ,m}) 〈∇gi (x̂) | z〉 = 0

(∀j ∈ J(x̂)) 〈∇hj(x̂) | z〉 < 0.

Then, there exists µ̂ ∈ RN and λ̂ ∈ [0,+∞[q such that x̂ is a critical point
of L(·, µ̂, λ̂) and the complementary slackness condition holds.

Remark: A sufficient condition for Mangasarian-Fromovitz conditions to be
satisfied is that {∇gi (x̂) | i ∈ {1, . . . ,m}} ∪ {∇hj(x̂) | j ∈ J(x̂)} is a family
of linearly independent vectors.
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Exercise 2

Let f be defined as(
∀x = (x (i))1≤i≤N ∈ RN

)
f (x) =

N∑
i=1

exp(x (i))

with N > 1. We want to find a minimizer of f on RN subject to the
constraints

N∑
i=1

x (i) = 1

(∀i ∈ {1, . . . ,N}) x (i) ≥ 0.

1. What can be said about the existence/uniqueness of a solution to this
problem ?

2. Apply the Lagrange multiplier method.
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Exercise 3

By using the Lagrange multipliers method, solve the following problem

maximize
x=(x(i))1≤i≤N∈B

(x (N))3 − 1

2
(x (N))2

where B is the unit sphere, centered at 0, of RN .
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A few algorithms
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Problem

Let H be a Hilbert space.
Let f : H → R be differentiable.
Let C be a nonempty closed convex subset of H.
We want to:

Find x̂ ∈ Argmin
x∈C

f (x).
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Problem

Let H be a Hilbert space.
Let f : H → R be differentiable.
Let C be a nonempty closed convex subset of H.
We want to:

Find x̂ ∈ Argmin
x∈C

f (x).

Objective: Build a sequence (xn)n∈N converging to a minimizer.
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Principle of first-order methods

I If f is differentiable, then, at iteration n, we have

(∀x ∈ H) f (x) = f (xn) + 〈∇f (xn) | x − xn〉+ o(‖x − xn‖).

So if ‖xn+1 − xn‖ is small enough and xn+1 is chosen such that

〈∇f (xn) | xn+1 − xn〉 < 0

then f (xn+1) < f (xn).
I In particular, the steepest descent direction is given by

xn+1 − xn = −γn∇f (xn), γn ∈ ]0,+∞[ .

I To secure that the solution belongs to C we can add a projection step.
I A relaxation parameter λn can also be added.
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Principle of first-order methods

The projected gradient algorithm has the following form:

xn+1 = xn + λn
(
PC (xn − γn∇f (xn))− xn)

)
where γn ∈ ]0,+∞[ and λn ∈]0, 1].
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Principle of first-order methods

The projected gradient algorithm has the following form:

xn+1 = xn + λn
(
PC (xn − γn∇f (xn))− xn)

)
where γn ∈ ]0,+∞[ and λn ∈]0, 1].

Remark: x is a fixed point of the projected gradient iteration if and only if
x ∈ C and

(∀y ∈ C ) 〈∇f (x) | y − x〉 ≥ 0.



17/23

Principle of first-order methods

The projected gradient algorithm has the following form:

xn+1 = xn + λn
(
PC (xn − γn∇f (xn))− xn)

)
where γn ∈ ]0,+∞[ and λn ∈]0, 1].

Remark: x is a fixed point of the projected gradient iteration if and only if
x ∈ C and

(∀y ∈ C ) 〈∇f (x) | y − x〉 ≥ 0.

Proof: If x is a fixed point, then

x = x + λn
(
PC (x − γn∇f (x))− x

)
⇔ x = PC (x − γn∇f (x)).

According to the characterization of the projection, for every y ∈ C ,

〈x − γn∇f (x)− x | y − x〉 ≤ 0

⇔ 〈∇f (x) | y − x〉 ≥ 0.
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Principle of first-order methods

The projected gradient algorithm has the following form:

xn+1 = xn + λn
(
PC (xn − γn∇f (xn))− xn)

)
where γn ∈ ]0,+∞[ and λn ∈]0, 1].

Remark:

I x is a fixed point of the projected gradient iteration if and only if
x ∈ C and

(∀y ∈ C ) 〈∇f (x) | y − x〉 ≥ 0.

I When f is convex, x is a fixed point of the projected gradient iteration
if and only if x is a global minimizer of f over C .
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Principle of first-order methods

The projected gradient algorithm has the following form:

xn+1 = xn + λn
(
PC (xn − γn∇f (xn))− xn)

)
where γn ∈ ]0,+∞[ and λn ∈]0, 1].

Remark: If C = H and λn = 1, we recover the standard gradient descent
iteration:

xn+1 = xn − γn∇f (xn).
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Convergence

Convergence theorem

Assume that f is convex and has a Lipschtzian gradient with constant
β ∈ ]0,+∞[, i.e.

(∀(x , y) ∈ H2) ‖∇f (x)−∇f (y)‖ ≤ β‖x − y‖.

Assume that Argminx∈C f (x) 6= ∅.
Assume that infn∈N γn > 0, supn∈N γn < 2/β, infn∈N λn > 0, and
supn∈N λn ≤ 1.
Then the sequence (xn)n∈N generated by the projected gradient algorithm
converges to a minimizer of f over C .
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Convergence

Convergence theorem

Assume that f is convex and has a Lipschtzian gradient with constant
β ∈ ]0,+∞[.
Assume that Argminx∈C f (x) 6= ∅.
Assume that infn∈N γn > 0, supn∈N γn < 2/β, infn∈N λn > 0, and
supn∈N λn ≤ 1.
Then the sequence (xn)n∈N generated by the projected gradient algorithm
converges to a minimizer of f over C .
In addition, if f is strongly convex, the convergence is linear, i.e. there
exists χ ∈ [0, 1[ such that

(∀n ∈ N) ‖xn − x̂‖ ≤ χn‖x0 − x̂‖

where x̂ is the unique minimizer of f over C .
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Convergence

Convergence theorem

Assume that f is convex and has a Lipschtzian gradient with constant
β ∈ ]0,+∞[.
Assume that Argminx∈C f (x) 6= ∅.
Assume that infn∈N γn > 0, supn∈N γn < 2/β, infn∈N λn > 0, and
supn∈N λn ≤ 1.
Then the sequence (xn)n∈N generated by the projected gradient algorithm
converges to a minimizer of f over C .

Remark: If f is non convex with a β-Lipschtzian gradient, it can only be
proved that (f (xn))n∈N is a converging sequence provided that γn ≤ 1/β.
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Example: Uzawa algorithm

Problem

Let L : H × [0,+∞[q → R be differentiable with respect to its second
argument. We want to find a saddle point of L

Solution

Set λ0 ∈ [0,+∞[q

For n = 1, . . . Set γn ∈ ]0,+∞[, ρn ∈]0, 1]
xn ∈ ArgminL(·, λn)
λn+1 = λn + ρn(P[0,+∞[q(λn + γn∇λL(xn, λn))− λn).
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Principle of second-order methods

I If f is twice differentiable, then, at iteration n, we have

(∀x ∈ H) f (x) =f (xn) + 〈∇f (xn) | x − xn〉

+
1

2

〈
(x − xn) | ∇2f (xn)(x − xn)

〉
+ o(‖x − xn‖2).

I If ∇2f (xn) is positive definite, the minimizer xn+1 of the quadratic

term is given by Newton’s iteration

∇f (xn) +∇2f (xn)(xn+1 − xn) = 0

⇔ xn+1 = xn −
(
∇2f (xn)

)−1∇f (xn).
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Convergence

Convergence theorem

Let f ∈ H → ]−∞,+∞] be three times continuously differentiable in
a neigborhood of a local minimizer x̂ and assume that ∇2f (x̂) is positive
definite.
Then, there exists ε ∈ ]0,+∞[ such that, if ‖x0 − x̂‖ ≤ ε, then (xn)n∈N
converges to x̂ .
In addition, the convergence is quadratic, i.e. there exists κ ∈ ]0,+∞[ such
that

(∀n ∈ N) ‖xn+1 − x̂‖ ≤ κ‖xn − x̂‖2.
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Numerical behaviour

I Although the convergence of Newton’s algorithm is faster than the
gradient descent in terms of iteration number, the computational cost
of each iteration is higher.

I To improve the convergence guarantees of Newton’s algorithm, we may
practically modify it as follows:

(∀n ∈ N) xn+1 = xn − γn
(
∇2f (xn) + λnId

)−1∇f (xn),

with (γn, λn) ∈ ]0,+∞[2.

I Quasi-Newton algorithms read

(∀n ∈ N) xn+1 = xn − H−1n ∇f (xn),

where Hn is a definite positive matrix providing some approximation to
the Hessian.
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Exercise 4

Let H and G be real Hilbert spaces and let L ∈ B(H,G). Let y ∈ G and let
α ∈ ]0,+∞[.
We want to minimize the function defined as

(∀x ∈ H) f (x) =
1

2
‖Lx − y‖2 +

α

2
‖x‖2.

1. Give the form of the gradient descent algorithm allowing us to solve
this problem.

2. How does Newton’s algorithm read for this function ?

3. Study the convergence of the gradient descent algorithm by
performing the eigendecomposition of L∗L.


