Master MVA Optimization Reminders Part II

Jean-Christophe Pesquet

Center for Visual Computing Inria, CentraleSupélec Institut Universitaire de France jean-christophe@pesquet.eu

Iterating projections

Feasibility problem

Problem

Let \mathcal{H} be a Hilbert space. Let $m \in \mathbb{N} \setminus \{0, 1\}$.

Let $(C_i)_{1 \leq i \leq m}$ be closed convex subsets of \mathcal{H} such that $\bigcap C_i \neq \varnothing$.

We want to

Find
$$\widehat{x} \in \bigcap_{i=1}^{m} C_i$$
.

m

m

i=1

POCS (Projection Onto Convex Sets) algorithm

For every $n \in \mathbb{N} \setminus \{0\}$, let $i_n - 1$ denote the remainder after division of n - 1 by m.

Set
$$x_0 \in \mathcal{H}$$

For $n = 1, ...$
 $| x_{n+1} = P_{C_{i_n}}(x_n)$.

Feasibility problem

Problem

Let \mathcal{H} be a Hilbert space. Let $m \in \mathbb{N} \setminus \{0, 1\}$. m Let $(C_i)_{1 \leq i \leq m}$ be closed convex subsets of \mathcal{H} such that $\bigcap C_i \neq \emptyset$. We want to Find $\widehat{x} \in \bigcap^{m} C_{i}$. i=1POCS (Projection Onto Convex Sets) algorithm Let $(\lambda_n)_{n\geq 1}$ be a sequence of $[\epsilon_1, 2-\epsilon_2]$ with $(\epsilon_1, \epsilon_2) \in [0, +\infty]^2$ such that $\epsilon_1 + \epsilon_2 < 2.$ For every $n \in \mathbb{N} \setminus \{0\}$, let $i_n - 1$ denote the remainder after division of n - 1by m. Set $x_0 \in \mathcal{H}$ For n = 1, ...

$$[x_{n+1} = x_n + \lambda_n(P_{C_{i_n}}(x_n) - x_n).$$

Convergence of POCS

Theorem

The sequence $(x_n)_{n\in\mathbb{N}}$ generated by the POCS algorithm converges to a point in $\bigcap_{i=1}^m C_i$.

Exercise 1

Let ${\mathcal H}$ be a real Hilbert space.

- 1. Let $c \in \mathcal{H}$ and $\rho \in]0, +\infty[$. What is the expression of the projection onto a closed ball $B(c, \rho)$ with center c and radius ρ ?
- 2. We consider three closed balls which are assumed to have a common point. Propose an algorithms to compute such a point.

Lagrange duality

Constrained optimization problem

Let
$$\mathcal{H}$$
 be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$.
Let $(m, q) \in \mathbb{N}^2$. For every $i \in \{1, \ldots, m\}$, let $g_i: \mathcal{H} \to \mathbb{R}$ and
for every $j \in \{1, \ldots, q\}$, let $h_j: \mathcal{H} \to \mathbb{R}$.
Let

$$egin{aligned} \mathcal{C} &= \{x \in \mathcal{H} \mid (orall i \in \{1,\ldots,m\}) \;\; g_i(x) = 0 \ & (orall j \in \{1,\ldots,q\}) \;\; h_j(x) \leq 0 \}. \end{aligned}$$

We want to:

Find
$$\widehat{x} \in \underset{x \in C}{\operatorname{Argmin}} f(x).$$

<u>Remark</u>: A vector $x \in \mathcal{H}$ is said to be feasible if $x \in \operatorname{dom} f \cap C$.

Definitions

The Lagrange function (or Lagrangian) associated with the previous problem is defined as

$$(\forall x \in \mathcal{H})(\forall \mu = (\mu_i)_{1 \le i \le m} \in \mathbb{R}^m)(\forall \lambda = (\lambda_j)_{1 \le j \le q} \in [0, +\infty[^q)$$
$$\mathcal{L}(x, \mu, \lambda) = f(x) + \sum_{i=1}^m \mu_i g_i(x) + \sum_{j=1}^q \lambda_j h_j(x).$$

The vectors μ and λ are called Lagrange multipliers.

<u>**Remark**</u>: dom $\mathcal{L} = \operatorname{dom} f \times \mathbb{R}^m \times [0, +\infty[^q]]$.

Saddle points

$$\begin{split} &(\widehat{x},\widehat{\mu},\widehat{\lambda})\in\mathcal{H}\times\mathbb{R}^m\times[0,+\infty[^q\text{ is saddle point of }\mathcal{L}\text{ if}\\ &(\forall(x,\mu,\lambda)\in\mathcal{H}\times\mathbb{R}^m\times[0,+\infty[^q\,)\qquad\mathcal{L}(\widehat{x},\mu,\lambda)\leq\mathcal{L}(\widehat{x},\widehat{\mu},\widehat{\lambda})\leq\mathcal{L}(x,\widehat{\mu},\widehat{\lambda}). \end{split}$$

Saddle points

 $(\widehat{x},\widehat{\mu},\widehat{\lambda}) \in \mathcal{H} imes \mathbb{R}^m imes [0,+\infty[^q \text{ is saddle point of } \mathcal{L} \text{ if }]$

 $(\forall (x,\mu,\lambda) \in \mathcal{H} \times \mathbb{R}^m \times [0,+\infty[^q)) \qquad \mathcal{L}(\widehat{x},\mu,\lambda) \leq \mathcal{L}(\widehat{x},\widehat{\mu},\widehat{\lambda}) \leq \mathcal{L}(x,\widehat{\mu},\widehat{\lambda}).$

Theorem

Let $\underline{\mathcal{L}}$ and $\overline{\mathcal{L}}$ be defined as $(\forall (\mu, \lambda) \in \mathbb{R}^m \times [0, +\infty[^q]) \quad \underline{\mathcal{L}}(\mu, \lambda) = \inf_{x \in \mathcal{H}} \mathcal{L}(x, \mu, \lambda)$ $(\forall x \in \mathcal{H}) \quad \overline{\mathcal{L}}(x) = \sup_{\mu \in \mathbb{R}^m, \lambda \in [0, +\infty[^q]} \mathcal{L}(x, \mu, \lambda).$ $(\widehat{x}, \widehat{\mu}, \widehat{\lambda}) \in \mathcal{H} \times \mathbb{R}^m \times [0, +\infty[^q] \text{ is a saddle point of } \mathcal{L} \text{ if and only if}$ $(\forall x \in \mathcal{H}) \quad \overline{\mathcal{L}}(\widehat{x}) \leq \overline{\mathcal{L}}(x)$ $(\forall (\mu, \lambda) \in \mathbb{R}^m \times [0, +\infty[^q]) \quad \underline{\mathcal{L}}(\mu, \lambda) \leq \underline{\mathcal{L}}(\widehat{\mu}, \widehat{\lambda})$ $\underline{\mathcal{L}}(\widehat{\mu}, \widehat{\lambda}) = \overline{\mathcal{L}}(\widehat{x}).$

Saddle points

Theorem

Let
$$\underline{\mathcal{L}}$$
 and $\overline{\mathcal{L}}$ be defined as
 $(\forall (\mu, \lambda) \in \mathbb{R}^m \times [0, +\infty[^q]) \quad \underline{\mathcal{L}}(\mu, \lambda) = \inf_{x \in \mathcal{H}} \mathcal{L}(x, \mu, \lambda)$
 $(\forall x \in \mathcal{H}) \quad \overline{\mathcal{L}}(x) = \sup_{\mu \in \mathbb{R}^m, \lambda \in [0, +\infty[^q]} \mathcal{L}(x, \mu, \lambda).$
 $(\widehat{x}, \widehat{\mu}, \widehat{\lambda}) \in \mathcal{H} \times \mathbb{R}^m \times [0, +\infty[^q] \text{ is a saddle point of } \mathcal{L} \text{ if and only if}$
 $(\forall x \in \mathcal{H}) \quad \overline{\mathcal{L}}(\widehat{x}) \leq \overline{\mathcal{L}}(x)$
 $(\forall (\mu, \lambda) \in \mathbb{R}^m \times [0, +\infty[^q]) \quad \underline{\mathcal{L}}(\mu, \lambda) \leq \underline{\mathcal{L}}(\widehat{\mu}, \widehat{\lambda})$
 $\underline{\mathcal{L}}(\widehat{\mu}, \widehat{\lambda}) = \overline{\mathcal{L}}(\widehat{x}).$

<u>Remark</u>: $\overline{\mathcal{L}}$ is called the primal Lagrange function and $\underline{\mathcal{L}}$ the dual Lagrange function.

Sufficient condition for a constrained minimum

Assume that there exists a feasible point. If $(\hat{x}, \hat{\mu}, \hat{\lambda}) \in \mathcal{H} \times \mathbb{R}^m \times [0, +\infty[^q \text{ is a saddle point of } \mathcal{L},$ then \hat{x} is minimizer of f over C. In addition, the complementary slackness condition holds: $(\forall j \in \{1, \dots, q\}) \qquad \hat{\lambda}_j h_j(\hat{x}) = 0.$

Convex case

Assume that f is a convex function, $(g_i)_{1 \le i \le m}$ are affine functions and $(h_j)_{1 \le j \le q}$ are convex functions. Assume that the Slater condition holds, i.e. there exists $\overline{x} \in \text{dom } f$ such that

$$egin{array}{lll} (orall i\in\{1,\ldots,m\}) & g_i(\overline{x})=0 \ (orall j\in\{1,\ldots,q\}) & h_j(\overline{x})<0. \end{array}$$

 \widehat{x} is a minimizer of f over C if and only if there exists $\widehat{\mu} \in \mathbb{R}^m$ and $\widehat{\lambda} \in [0, +\infty[^q \text{ such that } (\widehat{x}, \widehat{\mu}, \widehat{\lambda}) \text{ is a saddle point of the Lagrangian.}$

Convex case

Assume that f is a convex function, $(g_i)_{1 \le i \le m}$ are affine functions and $(h_j)_{1 \le j \le q}$ are convex functions. Assume that the Slater condition holds, i.e. there exists $\overline{x} \in \text{dom } f$ such that

$$egin{array}{lll} (orall i\in\{1,\ldots,m\}) & g_i(\overline{x})=0 \ (orall j\in\{1,\ldots,q\}) & h_j(\overline{x})<0. \end{array}$$

 \widehat{x} is a minimizer of f over C if and only if there exists $\widehat{\mu} \in \mathbb{R}^m$ and $\widehat{\lambda} \in [0, +\infty[^q \text{ such that } (\widehat{x}, \widehat{\mu}, \widehat{\lambda}) \text{ is a saddle point of the Lagrangian.}]$

<u>Remark</u>: Under the assumptions of the above theorem, if \hat{x} is a minimizer of f over C then $\mathcal{L}(\cdot, \hat{\mu}, \hat{\lambda})$ is a convex function which is minimum at \hat{x} . This optimality condition is often used to calculate \hat{x} , in conjunction with the complementary slackness condition.

Differentiable case

Karush-Kuhn-Tucker (KKT) theorem

Assume that f, $(g_i)_{1 \le i \le m}$, and $(h_j)_{1 \le j \le q}$ are continuously differentiable on $\mathcal{H} = \mathbb{R}^N$.

Assume that \hat{x} is a local minimizer of f over C satisfying the following Mangasarian-Fromovitz constraint qualification conditions :

(i) $\{\nabla g_i(\hat{x}) \mid i \in \{1, ..., m\}\}$ is a family of linearly independent vectors; (ii) there exists $z \in \mathbb{R}^N$ such that

$(\forall i \in \{1,\ldots,m\})$	$\langle \nabla g_i(\widehat{x}) \mid z \rangle = 0$
$(\forall j \in J(\widehat{x}))$	$\langle abla h_j(\widehat{x}) \mid z angle < 0$

where $J(\hat{x}) = \{j \in \{1, ..., q\} \mid h_j(\hat{x}) = 0\}$ is the set of active inequality constraints at \hat{x} .

Then, there exists $\widehat{\mu} \in \mathbb{R}^N$ and $\widehat{\lambda} \in [0, +\infty[^q \text{ such that } \widehat{x} \text{ is a critical point of } \mathcal{L}(\cdot, \widehat{\mu}, \widehat{\lambda})$ and the complementary slackness condition holds.

Differentiable case

Karush-Kuhn-Tucker (KKT) theorem

Assume that f, $(g_i)_{1 \le i \le m}$, and $(h_j)_{1 \le j \le q}$ are continuously differentiable on $\mathcal{H} = \mathbb{R}^N$. Assume that \hat{x} is a local minimizer of f over C satisfying the following

Mangasarian-Fromovitz constraint qualification conditions :

(i) $\{\nabla g_i(\hat{x}) \mid i \in \{1, ..., m\}\}$ is a family of linearly independent vectors; (ii) there exists $z \in \mathbb{R}^N$ such that

$$egin{aligned} & (orall i\in\{1,\ldots,m\}) & & \langle
abla g_i(\widehat{x})\mid z
angle = 0 \ & (orall j\in J(\widehat{x})) & & \langle
abla h_j(\widehat{x})\mid z
angle < 0. \end{aligned}$$

Then, there exists $\widehat{\mu} \in \mathbb{R}^N$ and $\widehat{\lambda} \in [0, +\infty[^q \text{ such that } \widehat{x} \text{ is a critical point of } \mathcal{L}(\cdot, \widehat{\mu}, \widehat{\lambda})$ and the complementary slackness condition holds.

<u>Remark</u>: A sufficient condition for Mangasarian-Fromovitz conditions to be satisfied is that $\{\nabla g_i(\hat{x}) \mid i \in \{1, ..., m\}\} \cup \{\nabla h_j(\hat{x}) \mid j \in J(\hat{x})\}$ is a family of linearly independent vectors.

Exercise 2

Let f be defined as

$$(\forall x = (x^{(i)})_{1 \le i \le N} \in \mathbb{R}^N)$$
 $f(x) = \sum_{i=1}^N \exp(x^{(i)})$

with N > 1. We want to find a minimizer of f on \mathbb{R}^N subject to the constraints

$$\sum_{i=1}^{N} x^{(i)} = 1$$
$$(\forall i \in \{1, \dots, N\}) \quad x^{(i)} \ge 0.$$

- 1. What can be said about the existence/uniqueness of a solution to this problem ?
- 2. Apply the Lagrange multiplier method.

Exercise 3

By using the Lagrange multipliers method, solve the following problem

$$\underset{x=(x^{(i)})_{1 \le i \le N} \in B}{\text{maximize}} \ (x^{(N)})^3 - \frac{1}{2} (x^{(N)})^2$$

where *B* is the unit sphere, centered at 0, of \mathbb{R}^N .

A few algorithms

Problem

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \to \mathbb{R}$ be differentiable. Let C be a nonempty closed convex subset of \mathcal{H} . We want to: Find $\hat{x} \in \operatorname{Argmin} f(x)$.

```
x∈C
```

Problem

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \to \mathbb{R}$ be differentiable. Let C be a nonempty closed convex subset of \mathcal{H} . We want to: Find $\hat{x} \in \underset{x \in C}{\operatorname{Argmin}} f(x).$

Objective: Build a sequence $(x_n)_{n \in \mathbb{N}}$ converging to a minimizer.

If f is differentiable, then, at iteration n, we have

$$(\forall x \in \mathcal{H})$$
 $f(x) = f(x_n) + \langle \nabla f(x_n) | x - x_n \rangle + o(||x - x_n||).$

So if $||x_{n+1} - x_n||$ is small enough and x_{n+1} is chosen such that

$$\langle \nabla f(x_n) \mid x_{n+1} - x_n \rangle < 0$$

then $f(x_{n+1}) < f(x_n)$. In particular, the steepest descent direction is given by

$$x_{n+1} - x_n = -\gamma_n \nabla f(x_n), \qquad \gamma_n \in]0, +\infty[.$$

To secure that the solution belongs to C we can add a projection step.
 A relaxation parameter λ_n can also be added.

The projected gradient algorithm has the following form:

$$x_{n+1} = x_n + \lambda_n (P_C(x_n - \gamma_n \nabla f(x_n)) - x_n))$$

where $\gamma_n \in]0, +\infty[$ and $\lambda_n \in]0, 1]$.

The projected gradient algorithm has the following form:

$$x_{n+1} = x_n + \lambda_n (P_C(x_n - \gamma_n \nabla f(x_n)) - x_n))$$

where $\gamma_n \in]0, +\infty[$ and $\lambda_n \in]0, 1]$.

<u>Remark</u>: x is a fixed point of the projected gradient iteration if and only if $x \in C$ and

$$(\forall y \in C) \qquad \langle \nabla f(x) \mid y - x \rangle \geq 0.$$

The projected gradient algorithm has the following form:

$$x_{n+1} = x_n + \lambda_n (P_C(x_n - \gamma_n \nabla f(x_n)) - x_n))$$

where $\gamma_n \in]0, +\infty[$ and $\lambda_n \in]0, 1].$

<u>Remark</u>: *x* is a fixed point of the projected gradient iteration if and only if $x \in C$ and

$$(\forall y \in C) \qquad \langle \nabla f(x) \mid y - x \rangle \geq 0.$$

<u>Proof</u>: If x is a fixed point, then

$$x = x + \lambda_n (P_C(x - \gamma_n \nabla f(x)) - x)$$

$$\Leftrightarrow \quad x = P_C(x - \gamma_n \nabla f(x)).$$

According to the characterization of the projection, for every $y \in C$,

$$\langle x - \gamma_n \nabla f(x) - x \mid y - x \rangle \leq 0$$

 $\Leftrightarrow \quad \langle \nabla f(x) \mid y - x \rangle \geq 0.$

The projected gradient algorithm has the following form:

$$x_{n+1} = x_n + \lambda_n (P_C(x_n - \gamma_n \nabla f(x_n)) - x_n))$$

where $\gamma_n \in]0, +\infty[$ and $\lambda_n \in]0, 1]$.

Remark:

➤ x is a fixed point of the projected gradient iteration if and only if x ∈ C and

$$(\forall y \in C) \qquad \langle \nabla f(x) \mid y - x \rangle \geq 0.$$

When f is convex, x is a fixed point of the projected gradient iteration if and only if x is a global minimizer of f over C.

The projected gradient algorithm has the following form:

$$x_{n+1} = x_n + \lambda_n \big(P_C(x_n - \gamma_n \nabla f(x_n)) - x_n) \big)$$

where $\gamma_n \in]0, +\infty[$ and $\lambda_n \in]0, 1]$.

<u>Remark</u>: If $C = \mathcal{H}$ and $\lambda_n = 1$, we recover the standard gradient descent iteration:

$$x_{n+1} = x_n - \gamma_n \nabla f(x_n).$$

Convergence theorem

Assume that f is convex and has a Lipschtzian gradient with constant $\beta \in \ensuremath{]0}, +\infty[\ensuremath{,}$ i.e.

$$(orall (x,y) \in \mathcal{H}^2) \quad \|
abla f(x) -
abla f(y)\| \leq eta \|x - y\|$$

Assume that $\operatorname{Argmin}_{x \in C} f(x) \neq \emptyset$. Assume that $\inf_{n \in \mathbb{N}} \gamma_n > 0$, $\sup_{n \in \mathbb{N}} \gamma_n < 2/\beta$, $\inf_{n \in \mathbb{N}} \lambda_n > 0$, and $\sup_{n \in \mathbb{N}} \lambda_n \leq 1$. Then the sequence $(x_n)_{n \in \mathbb{N}}$ generated by the projected gradient algorithm converges to a minimizer of f over C.

Convergence theorem

Assume that f is convex and has a Lipschtzian gradient with constant $\beta \in]0, +\infty[$. Assume that $\operatorname{Argmin}_{x \in C} f(x) \neq \emptyset$. Assume that $\inf_{n \in \mathbb{N}} \gamma_n > 0$, $\sup_{n \in \mathbb{N}} \gamma_n < 2/\beta$, $\inf_{n \in \mathbb{N}} \lambda_n > 0$, and $\sup_{n \in \mathbb{N}} \lambda_n \leq 1$. Then the sequence $(x_n)_{n \in \mathbb{N}}$ generated by the projected gradient algorithm converges to a minimizer of f over C. In addition, if f is strongly convex, the convergence is linear, i.e. there exists $\chi \in [0, 1[$ such that

$$(\forall n \in \mathbb{N}) \quad \|x_n - \widehat{x}\| \le \chi^n \|x_0 - \widehat{x}\|$$

where \hat{x} is the unique minimizer of f over C.

Convergence theorem

Assume that f is convex and has a Lipschtzian gradient with constant $\beta \in]0, +\infty[$. Assume that $\operatorname{Argmin}_{x \in C} f(x) \neq \emptyset$. Assume that $\inf_{n \in \mathbb{N}} \gamma_n > 0$, $\sup_{n \in \mathbb{N}} \gamma_n < 2/\beta$, $\inf_{n \in \mathbb{N}} \lambda_n > 0$, and $\sup_{n \in \mathbb{N}} \lambda_n \leq 1$. Then the sequence $(x_n)_{n \in \mathbb{N}}$ generated by the projected gradient algorithm converges to a minimizer of f over C.

<u>Remark</u>: If f is non convex with a β -Lipschtzian gradient, it can only be proved that $(f(x_n))_{n \in \mathbb{N}}$ is a converging sequence provided that $\gamma_n \leq 1/\beta$.

Example: Uzawa algorithm

Problem

Let $\mathcal{L} \colon \mathcal{H} \times [0, +\infty[^q \to \mathbb{R}]$ be differentiable with respect to its second argument. We want to find a saddle point of \mathcal{L}

Solution

Set
$$\lambda_0 \in [0, +\infty[^q]$$

For $n = 1, ...$
 $\begin{bmatrix} \text{Set } \gamma_n \in]0, +\infty[, \rho_n \in]0, 1] \\ x_n \in \operatorname{Argmin} \mathcal{L}(\cdot, \lambda_n) \\ \lambda_{n+1} = \lambda_n + \rho_n (P_{[0, +\infty[^q]}(\lambda_n + \gamma_n \nabla_\lambda \mathcal{L}(x_n, \lambda_n)) - \lambda_n)). \end{bmatrix}$

Principle of second-order methods

If f is twice differentiable, then, at iteration n, we have

$$egin{aligned} (orall x \in \mathcal{H}) & f(x) = f(x_n) + \langle
abla f(x_n) \mid x - x_n
angle \ &+ rac{1}{2} \left\langle (x - x_n) \mid
abla^2 f(x_n) (x - x_n)
ight
angle + o(\|x - x_n\|^2). \end{aligned}$$

If ∇²f(x_n) is positive definite, the minimizer x_{n+1} of the quadratic term is given by Newton's iteration

$$\nabla f(x_n) + \nabla^2 f(x_n)(x_{n+1} - x_n) = 0$$

$$\Leftrightarrow \quad x_{n+1} = x_n - (\nabla^2 f(x_n))^{-1} \nabla f(x_n).$$

Convergence theorem

Let $f \in \mathcal{H} \rightarrow]-\infty, +\infty]$ be three times continuously differentiable in a neigborhood of a local minimizer \hat{x} and assume that $\nabla^2 f(\hat{x})$ is positive definite.

Then, there exists $\epsilon \in [0, +\infty[$ such that, if $||x_0 - \hat{x}|| \leq \epsilon$, then $(x_n)_{n \in \mathbb{N}}$ converges to \hat{x} .

In addition, the convergence is quadratic, i.e. there exists $\kappa\in\]0,+\infty[$ such that

$$(\forall n \in \mathbb{N}) \quad ||x_{n+1} - \widehat{x}|| \leq \kappa ||x_n - \widehat{x}||^2.$$

Numerical behaviour

- Although the convergence of Newton's algorithm is faster than the gradient descent in terms of iteration number, the computational cost of each iteration is higher.
- To improve the convergence guarantees of Newton's algorithm, we may practically modify it as follows:

$$(\forall n \in \mathbb{N})$$
 $x_{n+1} = x_n - \gamma_n (\nabla^2 f(x_n) + \lambda_n \mathrm{Id})^{-1} \nabla f(x_n),$

with $(\gamma_n, \lambda_n) \in]0, +\infty[^2.$

Quasi-Newton algorithms read

$$(\forall n \in \mathbb{N})$$
 $x_{n+1} = x_n - H_n^{-1} \nabla f(x_n),$

where H_n is a definite positive matrix providing some approximation to the Hessian.

Exercise 4

Let \mathcal{H} and \mathcal{G} be real Hilbert spaces and let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Let $y \in \mathcal{G}$ and let $\alpha \in]0, +\infty[$.

We want to minimize the function defined as

$$(\forall x \in \mathcal{H})$$
 $f(x) = \frac{1}{2} ||Lx - y||^2 + \frac{\alpha}{2} ||x||^2.$

- 1. Give the form of the gradient descent algorithm allowing us to solve this problem.
- 2. How does Newton's algorithm read for this function ?
- 3. Study the convergence of the gradient descent algorithm by performing the eigendecomposition of L^*L .