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Iterating projections
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Feasibility problem

Let H be a Hilbert space. Let m € N\ {0,1}.

Let (Ci)1<i<m be closed convex subsets of H such that ﬂ C#+o.
i=1
We want to
m
Find x € (1) .
i=1

POCS (Projection Onto Convex Sets) algorithm
For every n € N\ {0}, let i, — 1 denote the remainder after division of n—1
by m.

Set xg € H
Forn=1,...

[ Xn+1 = 'DC,-n(Xn)-
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Feasibility problem

Let #H be a Hilbert space. Let m € N\ {0, 1}.

m
Let (Ci)1<i<m be closed convex subsets of 7{ such that ﬂ G #o.
i=1
We want to ’
m
Find x € () G
i=1

POCS (Projection Onto Convex Sets) algorithm

Let (An)n>1 be a sequence of [e1,2 — €3] with (€1, 2) € 0, +o00[? such that
€1+ € < 2.

For every n € N\ {0}, let i, — 1 denote the remainder after division of n—1
by m.

Set xo € H
Forn=1,...

L Xn+1 = Xp + )\n(PC,-,, (xn) = Xn)-
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Convergence of POCS

The sequence (x,)nen generated by the POCS algorithm converges to a

m
point in m G.
i=1
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Exercise 1

Let ‘H be a real Hilbert space.
1. Let c € H and p € ]0,4o00[. What is the expression of the projection
onto a closed ball B(c, p) with center ¢ and radius p ?
2. We consider three closed balls which are assumed to have a common
point. Propose an algorithms to compute such a point.
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Lagrange duality
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Constrained optimization problem

Let H be a Hilbert space. Let f: H — ]|—o0, +o].

Let (m,q) € N2, For every i € {1,...,m}, let gi: H — R and
for every j € {1,...,q}, let hj: H = R.

Let

C={xeH|(Vie{l,...,m}) gi(x)=0
(VJ € {17' : 'aq}) hj(x) < 0}
We want to:

Find X € Argmin f(x).
xeC

Remark: A vector x € H is said to be feasible if x € domf N C.
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Definitions

The Lagrange function (or Lagrangian) associated with the previous prob-
lem is defined as

(Vx € H)(Vp = (pi)i<icm € RT)(VA = (A)1<j<q € [0, +00[7)

L A) = F(x)+ ) pigi(x) + > Aiki(x).
i=1

=

The vectors 1 and A are called Lagrange multipliers .

Remark: dom £ = dom f x R™x [0, +oo[? .
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Saddle points

~

(X,1,\) € H x R™ x [0, +00[? is saddle point of L if

(V(x 11, ) € HXRTx[0,+00[7)  L(R, 11, A) < L(%, 71, A) < L(x, i, ).
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Saddle points

(%,7,A) € H x R™ x [0, +0c[? is saddle point of £ if

(V0x, 1, X) € HXR™x[0,+00[7) L%, p, \) < L(Z, i, A) < L(x, i, A)-

Let £ and L be defined as

(Y(u, A) € R™ x [0, +oo[q) L(p,A) = )('2,1;_[ L(x, p, )

(WxeH) L(x)= sup L(x, p, A).
HERM AE[0,+o00[?

(%7, \) € H x R™ x [0, +-00[ is a saddle point of £ if and only if

(Vx e H) L(X) < L(x)
(V(1, A) € R™ x [0, +00[%) L1, \) < L(7i, \)
L(7,X) = L().
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Saddle points

Let £ and £ be defined as

(V(p,A) € RT x [0, 4-00[") - Lk, A) = inf L(x,p,2)

(VxeH) L(x)= sup L(x, 1, ).
HERM AE[0,4-00[?

(X,71,A) € H x R™ x [0, +00[? is a saddle point of £ if and only if

(Vx e H) L(X) < L(x)
(V(1, A) € R™ x [0,+00[7)  L(, A) < L7, N)
L(71.A) = L(R).

Remark: £ is called the primal Lagrange function and

L the dual Lagrange function .
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Sufficient condition for a constrained minimum

Assume that there exists a feasible point.

If (x,75,A) € H x R™ x [0, +00[? is a saddle point of L,
then X is minimizer of f over C.

In addition, the complementary slackness condition holds:

(vje{l,....q})  Ahi(x)=0.
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Convex case

Assume that f is a convex function, (gj)i<i<m are affine functions and
(hj)i<j<q are convex functions. Assume that the Slater condition holds,
i.e. there exists X € dom f such that

(Vie{l,...,m}) gi(x)=0
(Vje{1,....q9}) hj(x) < 0.

X is a minimizer of f over C if and only if there exists i € R™ and X e

[0, +o0o[? such that (X, 1, X) is a saddle point of the Lagrangian.
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Convex case

Assume that f is a convex function, (gj)i<i<m are affine functions and
(hj)i<j<q are convex functions. Assume that the Slater condition holds,
i.e. there exists X € dom f such that

(Vie{l,...,m}) gi(x)=0
(Vje{1,....q9}) hj(x) < 0.

X is a minimizer of f over C if and only if there exists i € R™ and X e

[0, +o0o[? such that (X, 1, X) is a saddle point of the Lagrangian.

Remark: Under the assumptions of the above theorem, if X is a minimizer
of f over C then L(-, i, A) is a convex function which is minimum at X.
This optimality condition is often used to calculate X, in conjunction with

the complementary slackness condition.
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Differentiable case

Karush-Kuhn-Tucker (KKT) theorem

Assume that f, (gi)1<i<m, and (hj)1<j<q are continuously differentiable on
H =RV,

Assume that X is a local minimizer of f over C satisfying the following
Mangasarian-Fromovitz constraint qualification conditions :

(1) {Vagi(x)|ie{l,...,m}} is a family of linearly independent vectors;
(/i) there exists z € RN such that
(Vie{1,...,m}) (Vgi(xX)|z) =0
(eJR®)  (Vh(R)|2) <0

where J(X) = {j € {1,...,q} | hj(X) = 0} is the set of
active inequality constraints at X.

Then, there exists i € RN and X € [0, +00[? such that X is a critical point
of L(-, i, \) and the complementary slackness condition holds.
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Differentiable case

Karush-Kuhn-Tucker (KKT) theorem

Assume that f, (gj)i1<i<m, and (hj)1<j<q are continuously differentiable on
H=RV.

Assume that X is a local minimizer of f over C satisfying the following
Mangasarian-Fromovitz constraint qualification conditions :

(1) {Vgi(x) | i € {1,...,m}} is a family of linearly independent vectors;
(/1) there exists z € ]RN such that

(Vie{l,....m}) (Vg(X)|z)=0
(Vjed(x)  (Vhi(x)]2z)<o.

Then, there exists fi € RN and A € [0, +00[? such that X is a critical point
of L(-, 1, )\) and the complementary slackness condition holds.

Remark: A sufficient condition for Mangasarian-Fromovitz conditions to be

satisfied is that {Vgj(X) | i € {1,...,m}} U{Vh;(xX) | j € J(X)} is a family
of linearly independent vectors.
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Let f be defined as
(vx = (x(M)1<icn € RY) f(x) = zN: exp(x)
i=1

with N > 1. We want to find a minimizer of f on RV subject to the
constraints

N
Z x) =1
i=1

(vie{1,...,N}) x>0

1. What can be said about the existence/uniqueness of a solution to this
problem 7

2. Apply the Lagrange multiplier method.
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Exercise 3

By using the Lagrange multipliers method, solve the following problem

maximize  (x(")3 — l(X(N))2
x=(x)1<;<nEB 2

where B is the unit sphere, centered at 0, of RV.
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A few algorithms
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Let H be a Hilbert space.

Let f: H — R be differentiable.

Let C be a nonempty closed convex subset of #.
We want to:

Find X € Argmin f(x).
xeC
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Let H be a Hilbert space.

Let f: H — R be differentiable.

Let C be a nonempty closed convex subset of #.
We want to:

Find X € Argmin f(x).
xeC

Objective: Build a sequence (x,)qen converging to a minimizer.
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Principle of first-order methods

» If f is differentiable, then, at iteration n, we have
(Vx € H) f(x) = f(xn) + (VF(xa) | x — xn) + o(||x = xal])-
So if ||Xn+1 — Xnl| is small enough and xp41 is chosen such that
(Vf(xn) | Xnt1 — Xn) <0

then f(xp41) < f(Xn).
P In particular, the steepest descent direction is given by

Xnt1 — Xn = —Yn VI (xn), Yn € 10, +00[.

> To secure that the solution belongs to C we can add a projection step.
> A relaxation parameter )\, can also be added.
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Principle of first-order methods

The projected gradient algorithm has the following form:

Xn+1 = Xp + An(PC(Xn - 'VHVf(Xn)) - X"))

where v, € ]0,4+o00[ and A, €]0, 1].
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Principle of first-order methods

The projected gradient algorithm has the following form:

Xnt1 = Xn + An(PC(Xn - IVHVf(Xn)) - X"))

where v, € ]0,4+o00[ and A, €]0, 1].

Remark: x is a fixed point of the projected gradient iteration if and only if
x € C and
(vyeC)  (VFi(x)|y—x)>0.
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Principle of first-order methods

The projected gradient algorithm has the following form:

Xngl = Xp + )\n(PC(Xn - ’Yan(Xn)) - X"))

where 7, € ]0,4+o0[ and X, €]0,1].

Remark: x is a fixed point of the projected gradient iteration if and only if

x € C and
(vyeC) (VI(x)|y—x)=0.

Proof: If x is a fixed point, then

x = x4 An(Pc(x =2 VF(x)) — x)
& x = Pc(x —yaVF(x)).

According to the characterization of the projection, for every y € C,

(x 30 VF(x) — x|y —x) <0
& (VF(x)|y—x)>0.
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Principle of first-order methods

The projected gradient algorithm has the following form:

Xnt1 = Xn + )\n(PC(Xn - anf(xn)) - X"))

where v, € ]0,+o0[ and A, €]0, 1].

Remark:

> x is a fixed point of the projected gradient iteration if and only if
x e C and
(vye€)  (VFi(x)|ly—x)=0.

> When f is convex, x is a fixed point of the projected gradient iteration
if and only if x is a global minimizer of f over C.
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Principle of first-order methods

The projected gradient algorithm has the following form:

Xnt1 = Xn + An(PC(Xn - 'VHVf(Xn)) - X"))

where v, € ]0,4+o00[ and A, €]0, 1].

Remark: If C =%H and A\, = 1, we recover the standard gradient descent
iteration:
Xnt1 = Xn — Yn VI (Xn).
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Convergence

Convergence theorem

Assume that f is convex and has a Lipschtzian gradient with constant
B € 10,+o0, i.e.

(V(x,y) € H?) [IVF(x) = V)l < Blix — vl

Assume that Argmin, . f(x) # @.

Assume that inf,enyvy, > 0, suppen¥n < 2/8, infpen Ay, > 0, and
SUp,eny An < 1.

Then the sequence (x,)nen generated by the projected gradient algorithm
converges to a minimizer of f over C.
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Convergence

Assume that f is convex and has a Lipschtzian gradient with constant
B € 10, 4o0.

Assume that Argmin, f(x) # @.

Assume that inf,enyn > 0, sup,envn < 2/8, infpenAn > 0, and
Sup,en An < 1.

Then the sequence (xp)nen generated by the projected gradient algorithm
converges to a minimizer of f over C.

In addition, if f is strongly convex, the convergence is linear, i.e. there
exists x € [0, 1] such that

(Vn € N) o — %1 < X"llx0 — %I

where X is the unique minimizer of f over C.
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Convergence

Convergence theorem

Assume that f is convex and has a Lipschtzian gradient with constant
B € 10, +o0.

Assume that Argmin, . f(x) # @.

Assume that inf,enyn > 0, sup,envn < 2/8, infpenAn > 0, and
Sup,eny An < 1.

Then the sequence (xp)nen generated by the projected gradient algorithm
converges to a minimizer of f over C.

Remark: If f is non convex with a -Lipschtzian gradient, it can only be
proved that (f(xn))nen is a converging sequence provided that v, < 1//.
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Example: Uzawa algorithm

Let £: H x [0,+0c[? — R be differentiable with respect to its second
argument. We want to find a saddle point of £

Set Ao € [0, +o0[?
Forn=1,...
Set v, € 10, +o0[, pn €]0,1]
Xp € ArgminL(-, \p)
Ant1 = Ap+ Pn(P[0,+oo["()\n + Y VAL(Xn; An)) — An).
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Principle of second-order methods

> If f is twice differentiable, then, at iteration n, we have
(Vx € H) f(x) =Ff(xn) + (VF(xn) | x — xn)
1
+5 ((x = xn) | V2F(xa)(x = xn)) + 0([|x = xa|?).

» If V2f(x,) is positive definite, the minimizer x,,1 of the quadratic
term is given by Newton's iteration

VF(xn) + V2f(x0)(Xns1 — xn) = 0
& Xpgl = Xp — (sz(x,,))AVf(x,,).
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Convergence

Let f € H — ]—o00,+0o0] be three times continuously differentiable in
a neigborhood of a local minimizer X and assume that V2f(X) is positive
definite.

Then, there exists € € ]0,+oo[ such that, if ||xo — X|| < €, then (xp)nen
converges to X.

In addition, the convergence is quadratic, i.e. there exists k € |0, +oo[ such
that

(VN €N) [xnrr — R < rllx — ZIP.
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Numerical behaviour

> Although the convergence of Newton's algorithm is faster than the
gradient descent in terms of iteration number, the computational cost
of each iteration is higher.

> To improve the convergence guarantees of Newton's algorithm, we may
practically modify it as follows:

(VnEN)  Xpr1 = xo — 70 (V2F(x0) + And) "V F(x0),
with (7m, An) € 10, +00[%.
> Quasi-Newton algorithms read
(Vn eN) Xpi1 = Xq — HIVF(x,),

where H, is a definite positive matrix providing some approximation to
the Hessian.
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Exercise 4

Let H and G be real Hilbert spaces and let L € B(H,G). Let y € G and let
a € 10, +ool.
We want to minimize the function defined as

1 «
(xe#)  flx)=lLx~ yIP+ §||X||2-

1. Give the form of the gradient descent algorithm allowing us to solve
this problem.

2. How does Newton's algorithm read for this function ?

3. Study the convergence of the gradient descent algorithm by
performing the eigendecomposition of L*L.



