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Review: convex analysis

Convex function

WAE1,  fOx+(1-Ny) A + (1N ()
Strictly convex function

VAEI0L X (1= A)y) < AF) - (1- ) f(y)
Strongly convex function

>0, 8.6 x> f(x)— pljx|[* is convex

Equivalently:
VAE0,1],  FOXH(I-N) 1) < AFE)+H(1-A) F(y)—pA(1-N)[x—y]

The largest possible p is called the strong convexity constant.

Convex Analysis & Optimization review



Minima of convex functions

Proposition (Supporting hyperplane)

If f is convex and differentiable at x then

fly) = Fx0) + V) (y—x)

Convex function
All local minima are global minima.

Strictly convex function
If there is a local minimum, then it is unique and global.

Strongly convex function
There exists a unique local minimum which is also global.
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Minima and stationary points of differentiable functions
Definition (Stationary point)
For f differentiable, we say that x is a stationary point if V f(x) = 0.

Theorem (Fermat)

If f is differentiable at x and x is a local minimum, then X is
stationary.

Theorem (Stationary point of a convex differentiable function)

If f is convex and differentiable at x and x is stationary then x is a
MINIMUM.

Theorem (Stationary points of a twice differentiable functions)
For f twice differentiable at x
o if x is a local minimum then V f(x) =0 and V?f(x) = 0.

o conversely if Vf(x) =0 and V2f(x) = 0 then x is a strict local
MINIMUmM.
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Brief review of Lagrange duality

Convex optimization problem with linear constraints
For

e f a convex function,

o X C RP a convex set included in the domain of f,

o AcR"™P beR"

mi)r(l f(x) subjectto Ax=Db (P)
x€

Lagrangian
L(x,A) = f(x) + AT(Ax — b)
with A € R™ the Lagrange multiplier.
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Properties of the Lagrangian

Link between primal and Lagrangian

max L(x,A) =
AER™

{f(x) if Ax=b

+o0o0 otherwise.

So that

. i s LA
e R 709 LR R £O0 )

Lagrangian dual objective function

g(A) = min L(x, A\)

xeX

Dual optimization problem

A) = in L(x, A D
max g(A) = max min L(x, A) (D)
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Maxmin-minmax inequality, weak and strong duality
For any f: R™ x R™ and any w € R™ and z € R™, we have

. p— |
Teg e T D) = iy nap e

Weak dnalitv

d* = A) = in L(x,A) < mi L(x,A) = mi =: p*
R ) = mpx g L0 ) = i Y FOe ) = i 00 =i

So that in general, we have d* < p*. This is called weak duality

Strong duality
In some cases, we have strong duality:
o d* = p*
e Solutions to (P) and (D) are the same
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Slater’s qualification condition

Slater’s qualification condition is a condition on the constraints of a
convex optimization problem that guarantees that strong duality
holds.

For linear constraints, Slater’s condition is very simple:

Slater’s condition for a cvx opt. pb with lin. constraints

If there exists an x in the relative interior of X N {Ax = b} then
strong duality holds.

Convex Analysis & Optimization review



