Statistics review : Solutions

Semaine de pré-rentrée du master M VA

Multinomial random variables

1.
It 7= (2%,..,Zx) ~ M(m1,...,mi; 1) we have
P(Z, =1) = P(Z = ™), with e®) = (0,...,0, 1 ,0,...,0)
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For (ny,...,nx) € N such that >, ny = n, let
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This shows that N := (Ny, ..., Ng) follows the distribution M(71, ..., Tk ;n) since the multinomial coefficient

< n ) n!
N1y ey MK nil...ng!

is exactly equal to the number of ordered partitions of {1,...,n} into sets of cardinalities n1,...,nk.



Sufficient Statistic

We first show that the conditional independence statement implies the proposed factorization. Indeed,
we have

p(x,t,0) = p(0]t)p(t|x)p(x)
but since t = T'(z) is assumed to be a function of z, p(t|z) = §(t — T'(z)) and

p(x,t,0) = p(0|T(x))(5(t — T(ac))p(x),

where we have introduced the Dirac function (more precisely the Dirac in 0), so that after marginalizing ¢
out we obtain :

p(z,0) = p(0|T(x))p(x),
and so
p(0|T(x))

plalf) = P (),

which is of the desired form.

We now show conversely that the factorization of p(z|#) implies the conditional independence statement.
If

p(z|0) = f(z,T(x)) g(T(x),0)
then
p(t,z,0) = 6(T(x) — t) f(CE,T(:L‘)) g(T(x), 9) p(0) = (5(T($) — t) f(z,t) g(t,0) p(0),

where p(6) is the density of the prior distribution over 6 with respect to a reference measure on 6.

(To be rigorous, we should not write that this is a joint density for (¢,x,6) but that it is a derivative in
the sense of generalized functions of a joint probability measure over the triple (¢, z, 0) ; that is, we should call
for example u(t, z,6) the joint measure and instead of writing p(z, ¢, 8) we should write du(x,t,6). However,
to avoid to write things that are unnecessarily abstract we will stick to these non-rigorous notations. The
reasoning is however itself rigorous.)

As a consequence we have

p(t,0) = /p(tw,@) =/5(T(9«“) —t) f(x,1) g(t,0) dz = h(t) g(t,0) p(0).-

(Note that here p(t, ) is again very rigorously a density with respect to a reference measure in R?). For ¢
such that p(t,0) # 0, we have
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which shows that p(z|t,0) = p(x|t). If p(t,0) = 0, we can define p(x|t,d) the way we want (because on a set
of probability zero, its value does not matter) and in particular we may set p(x|t,8) = p(z|t).

Method of moments vs maximum likelihood estimation

1.
a)
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Ovre = arglénaxp(xl, ey X |0)

1
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=argminf st. 6> max z;
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Thus, HM% follows a Beta distribution whose parameters are « =n and 5 = 1.

c)
We can use the given formulas :
n
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Epl0rrre]) =0

Varg(éMLE) = 92
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MSE = E[(6 — §)?]
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Computation of maximum likelihood estimators

argmax P (1, ..., 2, |0) = argmax @2i=1%i . (1 — §)"~2i=1 %
0 0

n

= argznax exp (Z z; log(0) + (n — Z x;) log(l — 0))

i=

1
= argmax N log(f) + (n — N)log(1l —6),
[%

with N := 3" |. Each term is continuous, strictly concave and their sum goes to —oo towards 0 and 1 so
the MLE is unique.
b)

Let I(z1, ..., x,|0) = Nlog(0) + (n — N)log(1 — 0),

ol(x1,...,xn|0) N n—N
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P(Z1, oo Znl {mi}y) = it Bt i Zire

_ M Nk
= 7T1 '/TK

So (Ny, ..., Nk ) is a sufficient statistic for the sample because the likelihood depends on the data only through
these quantities (see the exercise called Sufficient statistic for definition).

b)
Ng

argmax 7} ... m % = argmax Ny log(m) 4 ... Nk log(mx)

The MLE is solution of the constrained convex optimization problem

K
argmax Z Ny log(my)
720, 3y Th=1 k=1



c)
Let L(m,A) = > 1 N0 Nk log(my) — A(32, 7 — 1) be the associated Lagrangian.
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Ny . .
= — since E 7 = 1.
" k=1 ’

Note that we only introduced Lagrange multipliers for the equality constraint and not for the positivity
constraints m; > 0 because, the log-likelihood diverges to —oo on the edge of the domain which ensures that
the constraints will be satisfied. We can indeed check that the estimators 75 are all non-negative.

3.

flu+h)=u"p+u'h
df(h) =u"h
Vi) =u
glu+h)=p Ap+p" Ah+ " ATh+h" AR
dg,(h) = p"(A+ AT)h
Vg(p) = (A+ AT

a)

If ¥ is fixed and positive definite,

1
argmax p(xy, ..., Tplu) = argmax—g log((2m)4|%]) — 3 Z(MTE_lu — 'Y ey — 2/ ST 2 B )
o

® i

= argmin Z(uTEflﬂ — 'Sy — 2 ] B )
s i
Let’s compute the gradient of the log-likelihood,
Vi(p) =Y 25 'p—25""a;

This gives us,
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b)

If p is fixed and A = ¥71, since

Z(% — )" Ny — ) = tr (Z(ml — )" (- N))

A 7

=tr (Z SN — p) (@ — M)T>

%

We have :

d)

Let H =

exp(— 2 tr(SA))

1
T1yeeey Ty |2 :71
Pl P = emasn? 2

(A,B+ H)r —(A,B)r =(A,H)p

f:A—=log(|4])
(hij)ij € R™

n

I+ H| = Z sgn(o H o(i)=i + hi,o(i))

UESn i=1
H1+h” Z sgn(o H ()=i t i o))
i=1 G€S\In i=1

=1+ th +O(H?)

i=1

d|.|r(H) =tr(H)

A symmetric positive definite, H symmetric such that A + H positive definite :

£)

log det(A + H) = log(det A. det(I + A™'H))
= logdet A+ logdet(I + A~ H)
= logdet A + tr(A™'H)
d| Ja(H) =tr(A ' H)
ViA) =47

d 1 1 -
logp(z1,...,zu|A) = —3 log((2m) + 5 log |A| — itr(EA)
1 e

Ayrp =371

Syvie =3

Indeed, if f € argmax, f(0) and 0 = ¢(@) then & € argmax,, f(¢(a)).



g)
o
((2m)9|%))2

If 3 is not invertible, let’s write & = U diag(\y, ..., Ak, 0,...,0)UT with U an orthogonal matrix and set
Ay = Udiag(\i, ..., Ak, ay oy ) TU T

P(@1, oy |, X) =

exp (= 5 (=) S @i - )

i

d 1 1, .
1ng(zla “~axn‘Aa) = _§log((27r) + 5 log |Aa| - 5 tr(EAa)

The second term goes to oo with o while the two others are constant, so the log-likelihood is unbounded. In
practice, the maximum likelihood estimator is extended by continuity to these case; the obtained estimator
can also be though of as the maximum likelihood estimators for Gaussian densities on the subspace spanned

by {xlv"wxn}'
Bayesian estimation

1.
a)

p(m|a)
plrla.n) = plola.m) - B
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b)
We denote by A the canonical simplex A := {u € R¥ | Zle u, = 1}. we then have
Elr;|Z] = /ijp(ﬂZ) dm

Let us consider a fixed value for j € {1,..., K} and define ; = ay + ny for all k.

T'(B1+...+ Bk) s
FElr;|Z] = s Pk dr
= T T /A it
T'(B1+...+Bk) ' L(B; + 1) [Tis; T(Br)
e, v(B) LBi+...+8k+1)

_IBi+1)  TBit...+Bk)

L) TG+ +Bx+1)
B;

B1+...+ 0k

I L)

ey + 1

with ot = a1 + ... + ak.



n1 —|— 1
ny+no+2

Without smoothing, if z;1 = 0 or zo = 0, which is common if 7y is close to 0 or 1, the maximum likelihood
estimator estimates that p; = 0 even though p; > 0. This is a major problem because then the probability
of some non-zero event is assessed to be equal to 0, which makes all probabilistic reasonings fail.

E[m\m,ng] =

2.

P = {p(z]0),0 € ©}
= {pa(0), 0 € A}

IT is a conjugate family of distributions for P if for all p, € II, there exists p,s € II such that we can write
Pa(0|z) = par(0).

pBernoulli(zW) = 91(1 - 0)1796
The family of beta distributions p,, 5(8) o §2~1(1—0)?~! is a conjugate family of distributions for the family
of Bernoulli distributions.

/\Z?’Zl Tip—nA
PPoisson(T|A) = m
The family of gamma distributions p, 5(A) oc A*"Le=#A is a conjugate family of distributions for the family
of Poisson distributions.

Peap(eln) o< exp (= D7 (0 — @) =7 (1= w3) = (1 = o) S5 (1 = o) )
The family of gaussian distributions with the given covariance and unknown mean is a conjugate family of
distributions for the family of gaussian random variables with fixed known covariance and unknown mean

(cf. ex. 3).

3.
a)

As the product of two gaussian distributions, the a posteriori distribution is still a gaussian N(fipas,w).

On the one hand,

(_ W 2ufipn ﬂ2PM)

202 20?2 2?2

On the other hand,

exp (Z _ ($i2;2ﬂ)2 _ (/L02;2/U) )

= oxp (g + o) 2(Y ey ) (2 L)

202 ' 272 202 ' 272

By identification

1 n 1
2 g2 g2
and we get the posterior mean :
Z T4 Ko
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b)

s

2T

fipar = An+po-(1=X,) ,with )\, =

_|_

noy 1
0-2 T2
d)

In this case and if pup =0 :

. A . 1
argmin — logp(xy, ..., zn|p) + §u2 = argmin — log p(x1,...,xn ) - p(p) for A = =
n "

Thus the MAP estimator can be viewed as a minimizer of the log-likelihood with some ridge regularization.
e)

UMAP = WPM

This property doesn’t hold for a Bernoulli distribution with a Beta prior.

f)
I v 2
Ellog p(X'l,0)] = B[~ 210
g)
R(v) = Bl(v - X')?]
= E[(v - E[X']| + E[X'] - X')?]
= Bl(v - EIX'])’| + B(E[X"] = X')*] + 2B[(v — BIX'])(E[X"] - X")]
= (u—v*) + Var(X)
h)
Ep,[E(1)] = Ep,[R(f1) — R(p)]
= Ep,[(p — )
= Ep,[(i — Ep, [A))*] + (Ep, [i] — n)°
i)



Ep,[E(uamapr)] = Ep, [(kvap — Ep, [aap))’] + (Ep, [uavap] — 1)

n (u—;io)
— o2 + T
E+27 @+ AP
)
o2
R.(MLE)=—
n
0_2
R.(PM) = "
A= )
1)

B, (i = 1)°] = Ep,, [Eurl(ft — 1)*|Dn]]

The inner quantity is minimized for every possible D,, by using the posterior mean.

Bregman divergence

1.
Dr(p,q) = (p,p) — (¢, 9) — 2{¢,p) +2(¢,q9) =P —¢,p— q)
2.
(VH(q))i = —logg; — 1
Du(p,q) =Y pilogpi — > qilogq; — Y (loggi + 1)(pi — ;)

= pi(logp; —log ¢;)

= KL(p,q)
3.

We assume the loss is differentiable.

F(u) = Ex[l(p, X)) = Ex[l(p", X)]

10



1 Ridge regression and PCA

X=USV', X~ =VSUT, S=diag(s;)

XX~ X=USV'VSU'USV
= U diag(1s,20)SV VT
=USV I =X

b)

(XTX)" =(VvS2v )~
=V(s)v?’

(XTX) " XT=x"(x")"'xT"
=VS S SUuT
=VvsuUT

X'XX~=VSU'usSv'vs Uu'=vsu’
d)
First suppose X = S. Let w be a solution to the normal equation.
sf_’iwl-:sl‘:swi:si_yifsi#()
(STy)i=0ifs; =0
So it is true if X = S.

Forany X, let w =V Tw,§=U"y.
w is a solution to the normal equation iff @ is a solution of S?w = S

2.

X = USVT, U and V are square matrices. The columns of U and the columns of V are called the
left-singular vectors and right-singular vectors of X.

11



a)

Since U and V are orthogonal matrices, we have for all w € R" : || Xw|| = |[USV Tw|| =
argmax || Xw| =V argmax |Suw]|
weR™,||w||=1 weR™,||w||=1
b)
o Lo conT
Y=-VSV
c)

i A k
= Z(XUJ)Q
= 5? .1
d)
XXTXv; =USVVISUUSV "v; = US*Vu; = 53, Xv;
3.
a)

Z\Iy ) w|? = ley“ i v)j=nw]®

= ||y— (XVig)w|?
= |ly — UpSw||?

with Uy = (uq, ..., uk), Sk = diag(si, ..., sg). So,

b= ((UkSk) "UxSk) " (UnSk) Ty = S, U .

b)

ISV T

1
~T _ _ _
W' ((x — To,v1), ..., (T — To, Uk)) E Wi (r — To,v;) = (x — o, E ;(uj,y)vj)

j J
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wp=(X"X+X,) ' Xy
= (V(S? +/\I V) TIVSU Ty
= V diag( W'y

2+/\

m
Zs —1—)\%’ v

=1

<.

d)

The coefficients for j > k will vanish.

e)
<XTy,1}]> <VSU y7vj>
=(SUTY),
= 5j <uja y>
f)

Andrei Tikhonov and Karl Pearson

Area under the curve and Mann-Whitney U statistic

a)

Let Cy be the set of elements that belong to class 0, C; be the set of elements that belong to class 1.

P(s(x) >b,x € Cl)
Pz € Cl)
= P(S(x)PTxb)e.]gS < Cl), since s(z) doesn’t depend on z.

—1-F()

rTP(b) =

P(s(x) > b,z € Cy)
P(l‘ S Co)
P(s(x) > b).P(z € Cy)
P(l‘ € Co)
=1-F(b)

rFP(b) =

Hence,

1
AUC—§
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b)
WLOG, suppose s(z1) < ... < $(zy), s(y1) < ... < $(ym). On the one hand,

U=> [{s(z)]z € Dy UDp and s(z) < s(x;)} | — n(n2+ 1)
i=1
=" [{s(e)lz € Dy and s(2) < s@)} | + 3 [ {5(2)]z € Dp and s(2) < s(a)} | "

- Z | {s(2)|z € Dy and s(z) < s(z;)} |
i=1

On the other hand,

and
PEP(s(a,)) = LA EC Dy mnd o2) 2 o)}
—1_ [{s(2)|z € Dy and s(z) < s(z;)}]

Z|
3

Il
S|

(1 — rFP(s(xi)))

1

I
.M:s

<
Il
—

(1 —rFP(s(2;))).(rTP(s(x;)) — rTP(s(z;—1))) with 29 = —o00

I
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