Quelques applications en finance

Soit $(B_t)_{t\geq 0}$ un mouvement Brownien standard de filtration associée $\mathbb{F}=(\mathcal{F}_t)_{t\geq 0}$. Dans la suite, r>0est le taux sans risque des marchés considérés et on notera \tilde{X} la valeur actualisée d'un actif de prix X.

Exercice 1. Dividendes

On considère un actif risqué de rendement r. Cet actif distribue à chaque instant t un taux de dividende δ_t et a une volatilité σ .

a) Justifier que le prix de l'actif à l'instant t, noté S_t est solution de l'EDS suivante

$$dS_t = S_t \left((r - \delta_t) dt + \sigma dB_t \right)$$

- b) Exprimer S_t en fonction de t et des paramètres.
- c) Donner le prix d'un call de maturité T, de strike K sur S à l'instant t.

Exercice 2. Volatilité locale

Soit S solution de $dS_t = S_t (rdt + \sigma(t, S_t)dB_t)$, où σ est une fonction Lipshitzienne bornée. On cherche à valoriser un produit de pay-off $f(S_T)$.

- a) Montrer que S est markovien.
- b) Montrer que $X_t = \mathbb{E}[f(S_T) \mid \mathcal{F}_t]$ est une martingale. c) On pose $P(t, x) = \mathbb{E}[e^{-r(T-t)}f(S_T) \mid S_t = x]$. On admettra que P est de classe $\mathcal{C}^{1,2}$. Montrer que P est solution de

$$\begin{cases} \frac{\partial P}{\partial t} + rx \frac{\partial P}{\partial x} + \frac{\sigma(t,x)^2 x^2}{2} \frac{\partial^2 P}{\partial x^2} - rP = 0 \\ P(T,x) = f(x) \end{cases}$$

Exercice 3. Volatilité stochastique

Soit $(\sigma_t)_{0 \le t}$ un processus \mathbb{F} -adapté tel que $0 < \sigma_1 \le \sigma_t \le \sigma_2$. On note S (resp. S^i) le processus solution de $dS_t = S_t (rdt + \sigma_t dB_t)$ (resp. $dS_t^i = S_t^i (rdt + \sigma_i dB_t)$). Soit h une fonction de pay-off convexe. On note P(t,x) (resp. $P_i(t,x)$) le prix du produit de pay-off $h(S_T)$ (resp. $h(S_T^i)$).

- a) En admettant que P_1 est $\mathcal{C}^{1,2}$, montrer que P_1 satisfait une EDP que l'on précisera.
- b) Montrer que $x \to P(t, x)$ est convexe.
- c) Exprimer $e^{-rT}P_1(t, S_T)$ en fonction de $e^{-rt}P_1(t, S_t)$.
- d) Déduire de ce qui précède que

$$P_1(t,x) \le P(t,x) \le P_2(t,x)$$

Exercice 4. Portefeuille de marché

Soit S solution de $dS_t = S_t (\mu_t dt + \sigma_t dB_t)$. On appelle portefeuille un couple (α, β) de processus adaptés tels que la valeur du portefeuille à l'instant t soit $V_t = \alpha_t S_t^0 + \beta_t S_t$. Le portefeuille est autofinançant si $dV_t = \alpha_t dS_t^0 + \beta_t dS_t$.

a) Montrer qu'un portefeuille autofinancé est caractérisé par le couple (v, β) tel que

$$\begin{cases} dV_t = r_t V_t dt + \beta_t (dS_t - r_t S_t dt) \\ V_0 = v \end{cases}$$

b) On note H le processus défini par $dH_t = -H_t(r_t dt + \theta_t dB_t)$ avec $\theta_t = (\mu_t - r_t)/\sigma_t$. Montrer que $M_t = H_t^{-1}$ défini un portefeuille autofinancé dont on précisera les composantes α , β .

Exercice 5. Portefeuille autofinançant

On considère un marché financier composé d'un actif sans risque de taux r > 0 et d'un actif riqué S

solution de l'EDS : $dS_t = S_t(\mu dt + \sigma dB_t)$. On note (π^0, π) un portefeuille de valeur $V_t = \pi_t^0 S_t^0 + \pi_t S_t$.

- a) Le portefeuille $(S_t, 1)$ est-il autofinançant?
- b) Le portefeuille $(x-2)\int_0^t uS_u e^{-ru}$, t) est-il autofinançant?
- c) Quelle stratégie autofinançante permet de couvrir une position longue en actif risqué égale à t?

Exercice 6. Marché complet mais non viable On considère un marché dans lequel sont négociés trois actifs. Un actif sans risque dont la dynamique est $dS_t^0 = S_t^0 r dt$ et deux actifs risqués $dS_t^i = S_t^i(\mu_i dt + \sigma dBt)$ avec $\mu_1 \neq \mu_2$.

- a) Montrer que le marché est complet
- b) Montrer que la marché admet des opportunités d'arbitrage.
- c) Construire explicitement une telle opportunité d'arbitrage, c'est- à-dire expliciter un triplet (ϕ_0, ϕ_1, ϕ_2) de processus adaptés tels que le portefeuille associé soit autofinançant et $V_0 = 0$; $V_T > 0$. On pourra se restreindre à une OA statique, c'est-à-dire telle que (ϕ_0, ϕ_1, ϕ_2) soient des constantes.